Academia.eduAcademia.edu

Outline

Design of Low-cost Telecommunications CubeSat-class Spacecraft

2010, Aerospace Technologies Advancements

https://doi.org/10.5772/6925

Abstract
sparkles

AI

This work presents a methodology for designing low-cost telecommunications CubeSat-class spacecraft, addressing the unique constraints related to their size, weight, and power limitations. The integration of multiple subsystems into a single unit is advocated as a means to optimize performance, reduce costs, and conserve resources. By leveraging software solutions, such as utilizing a Digital Signal Processor (DSP) to handle functionalities typically managed by separate hardware components, the design aims to demonstrate feasibility in high-stakes aerospace missions within a restricted budget.

References (20)

  1. communications equipments, Telecommunications systems can be kept at the extreme low end of the satellite communications cost spectrum.
  2. References
  3. Addaim, A.; Kherras, A. & Zantou, B. (2008). Design and Analysis of Store-and-Forward Data Collection Network using Low-cost Small Satellite and Intelligent Terminals, Journal of Aerospace Computing, Information and Communications, Vol. 5, No. 2, (February 2008) page numbers (35-46)
  4. Bahl, I. (2003). Lumped Elements for RF and Microwave Circuits, Artech House, first ed.
  5. Gérard, M. & Bousquet, M. (2002). Satellite Communication Systems, John Wiley & Sons; fourth edition
  6. Horan, S. (2002). Preparing a COTS radio for flight -lessons learned from the 3 corner satellite project, Proceedings of 16th Annual/USU Conference on Small Satellites, Logan, Utah, USA
  7. Hunyadi, G.; Klumpar, D.; Jepsen, S.; Larsen, B. & Obland, M. (2002). A commercial off the shelf (COTS) packet communications subsystem for the Montana EaRth- Orbiting Pico-Explorer (MEROPE) CubeSat, Proceedings of IEEE Aerospace Conference
  8. Jamalipour, A. (1998). Low Earth Orbital Satellites for Personal Communication Networks, Norwood, MA: Arthech House
  9. Lu, R. (1996). Modifying off-the-shelf, low cost, terrestrial transceivers for space based application, Proceedings of the 10th Annual AIAA/USU Conference on Small Satellites, Logan, September 1996, Utah, USA
  10. Milligan, T. (2005). Modern Antenna Design, second ed., Wiley Oppenheim, A.; Schafer, R. & Buck, J. (1999). Discrete-Time Signal Processing, second ed., Prentice Hall
  11. Paffet, J.; Jeans, T. & Ward, J. (1998). VHF-Band Interference Avoidance for Next-Generation Small Satellites, Proceedings of 12 th AIAA/USU Conference on Small Satellites, Logan, Utah, USA
  12. Pisacane, V. L., & Moore, R. C. (1994). Fundamentals of Space Systems, New York: Oxford University Press
  13. Poivey, C.; Buchner, S.; Howard, J. & Label, K. (2003). Testing Guidelines for Single Event Transient, NASA Goddard Space Flight Center, 30 June, 2003.
  14. Proakis, J. (1989). Digital Communications, McGraw-Hill, (Second Edition)
  15. Rotteveel, J. (2006). Thermal control issues for nano-and picosatellites, Proceedings of Space Technology Education Conference, Germany, May 2006, Braunschweig.
  16. TAPR, (1997). AX.25 Link Access Protocol for Amateur Packet Radio, TAPR, version 2.2
  17. Texas Instruments, (1996). TLC320AC01 data manual single-supply analog interface circuit, SLAS057D
  18. Texas Instruments, (1997). DSKplus User's Guide, SPRU191
  19. Texas Instruments, (2001). TMS320C54X DSP: CPU and peripherals, SPRU131G. Texas Instrument, (2002). TMS320VC5416 DSK Technical Reference, Wertz, R. & Larson, W. (1999). Space Mission Analysis and Design, Microcosm, (third ed.)
  20. Zantou, B. & Kherras, A. (2004). Small Mobile Ground Terminal Design for a Microsatellite Data Collection System, Journal of Aerospace Computing, Information and Communications, Vol. 1, No. 9, (September 2004) page numbers (364-371)