Academia.eduAcademia.edu

Outline

Visual learning by imitation with motor representations

2005, IEEE Transactions on Systems, Man, and Cybernetics

Abstract

We propose a general architecture for action (mimicking) and program (gesture) level visual imitation. Action-level imitation involves two modules. The View-Point Transformation(VPT) performs a "rotation" to align the demonstrator's body to that of the learner. The Visuo-Motor Map(VMM) maps this visual information to motor data.

References (32)

  1. S. Schaal. Is imitation learning the route to humanoid robots. Trends in Cognitive Sciences, 3(6), 1999.
  2. J. Yang, Y. Xu, and C.S. Chen. Hidden markov model approach to skill learning and its application to telerobotics. IEEE Tran- sations on Robotics and Automation, 10(5):621-631, October 1994.
  3. T. G. Williams, J. J. Rowland, and M. H. Lee. Teaching from examples in assembly and manipulation of snack food ingredi- ents by robot. In 2001 IEEE/RSJ, International Conference on Intelligent Robots and Systems, pages 2300-2305, Oct.29-Nov.03 2001.
  4. Aaron D'Souza, Sethu Vijayakumar, and Stephan Schaal. Learn- ing inverse kinematics. In International Conference on Intelli- gent Robots and Systems, Maui, Hawaii, USA, 2001.
  5. J.S. Bruner. Nature and use of immaturity. American Psychol- ogist, 27:687-708, 1972.
  6. Minoru Asada, Yuichiro Yoshikawa, and Koh Hosoda. Learn- ing by observation without three-dimensional reconstruction. In Intelligent Autonomous Systems (IAS-6), pages 555-560, 2000.
  7. A. Billard and G. Hayes. Drama, a connectionist architecture for control and learning in autonomous robots. Adaptive Behaviour, 7(1):35-63, 1999.
  8. Maja J. Matarić. Sensory-motor primitives as a basis for imita- tion: Linking perception to action and biology to robotics. In C. Nehaniv and K. Dautenhahn, editors, Imitation in Animals and Artifacts. MIT Press, 2000.
  9. G. Metta, G. Sandini, L. Natale, and F.Panerai. Sensorimo- tor interaction in a developing robot. In First International Workshop on Epigenetic Robotics: Modeling Cognitive Develop- ment in Robotic Systems, pages 18-19, Lund, Sweden, Septem- ber 2001.
  10. Giorgio Metta, Riccardo Manzotti, Francesco Panerai, and Giu- lui Sandini. Development: Is it the right way towards humanoid robotics? In IAS, Venice, Italy, July 2000.
  11. M. Asada, K.F. MacDorman, H. Ishiguro, and Y. Kuniyoshi. Cognitive developmental robotics as a new paradigm for the de- sign of humanoid robots. Robotics and Automation, 37:185-193, 2001.
  12. V.G. Payne and L.D. Isaacs. Human Motor Development: A Lifespan Approach. Mayfield Publishing Company, 2002.
  13. L. Fadiga, L. Fogassi, V. Gallese, and G. Rizzolatti. Visuomo- tor neurons: ambiguity of the discharge or 'motor' perception? International Journal of Psychophysiology, 35, 2000.
  14. V.S. Ramachandran. Mirror neurons and imitation learning as the driving force behind the great leap forward in human evolu- tion. Edge, 69, June 2000.
  15. A. Murata, L. Fadiga, L. Fogassi, V. Gallese, V. Raos, and G. Rizzolatti. Object representation in the ventral premotor cortex (area f5) of the monkey. Journal of Neurophysiology, 78(4):2226-2230, October 1997.
  16. Erhan Oztop. Modeling the Mirror: Grasp Learning and Ac- tion Recognition. PhD thesis, University of Southern California, August 2002.
  17. J. J. Gibson. The Ecological Approach to Visual Perception. Houghton Mifflin, Boston, 1979.
  18. L. Fogassi, V. Gallese, G. Buccino, L. Craighero, L. Fadiga, and G. Rizzolatti. Cortical mechanism for the visual guidance of hand grasping movements in the monkey: A reversible inactiva- tion study. Brain, 124(3):571-586, March 2001.
  19. James M. Rehg and Takeo Kanade. Visual tracking of high DOF articulated structures: an application to human hand tracking. In ECCV (2), pages 35-46, 1994.
  20. Ying Wu and Thomas S. Huang. Capturing articulated human hand motion: A divide-and-conquer approach. In ICCV (1), pages 606-611, 1999.
  21. Michael J. Black and Allan D. Jepson. Eigentracking: Robust matching and tracking of articulated objects using a view-based representation. In ECCV (1), pages 329-342, 1996.
  22. D. M. Gavrila. The visual analysis of human movement: A survey. CVIU, 73(1):82-98, 1999.
  23. James M. Rehg and Takeo Kanade. Model-based tracking of self- occluding articulated objects. In ICCV, pages 612-617, 1995.
  24. Ying Wu and Thomas S. Huang. View-independent recognition of hand postures. In CVPR, pages 88-94, June 2000.
  25. Richard L. Gregory. Eye and Brain, The Psychology of Seeing. Princeton University Press, Princeton, New Jersey, 1990.
  26. CyberGlove. http://www.immersion.com.
  27. Manuel Cabido-Lopes and José Santos-Victor. Visual transfor- mations in gesture imitation: What you see is what you do. In to appear in International Conference on Robotics and Automa- tion, Taiwan, 2003.
  28. Philippe Rochat. Ego function of early imitation. In Andrew N. Meltzoff and Wolfgang Prinz, editors, The Imitative Mind. Cam- bridge University Press, 2002.
  29. C. Taylor. Reconstruction of articulated objects from point cor- respondences in a single uncalibrated image. Computer Vision and Image Understanding, 80, 2000.
  30. Paul M. Baggenstoss. Statistical modeling us- ing gaussian mixtures and hmms with matlab. http://www.npt.nuwc.navy.mil/Csf/htmldoc/pdf/.
  31. N. Vlassis and A. Likas. A kurtosis-based dynamic approach to gaussian mixture modeling. IEEE Trans. Systems, Man, and Cybernetics, Part A, 29:393-399, 1999.
  32. Matteo Schenatti, Lorenzo Natale, Giorgio Metta, and Giulio Sandini. Object grasping data-set. Lira Lab, University of Gen- ova, Italy, 2003.