Academia.eduAcademia.edu

Outline

Electrical Silicon Spin Qubits: A Probable Route to Scalability

https://doi.org/10.9790/2834-1601011217

Abstract

Efforts to develop a large-scale quantum computer are being pursued worldwide with the major challenges coming from realization of good quality qubits with high coherence times and also in having scalable device architecture.The engineering problems related to better qubit connectivity and efficient qubit control need also to be simultaneously addressed. Development of quantum dot based silicon spin qubit architecture with an electrical interface for qubit initialization, control and readout seems to be a probable futuristic route to address these challenges and to lead way for possible realization of a practical quantum computer.The paper discusses these two aspects of scalability and engineering of a quantum-classical device interface for the silicon semiconductor spin qubits.

References (34)

  1. Feynman, R. P., Simulating physics with computers, International Journal of Theoretical Physics, 21, 467 (1982)., https://doi.org/10.1007/BF02650179
  2. David Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer, Proc. Royal Society of London A 400, 97 (1985). doi:10.1098/rspa.1985.0070
  3. Chuang, I. L et al, Experimental realization of a quantum algorithm, Nature 393, 143 (1998). https://doi.org/10.1038/30181.
  4. JonesJ. A. et al, Implementation of a quantum search algorithm on a quantum computer, Nature 393, 344 (1998). https://doi.org/10.1038/30687
  5. Vandersypen, L., Experimental Quantum Computation with Nuclear Spins in Liquid Solution, Ph.D. thesis, Stanford University (2001).
  6. J. I. Cirac and P. Zoller, Quantum Computations with Cold Trapped Ions, Phys. Rev. Lett. 74, 4091 (1995). https://doi.org/10.1103/PhysRevLett.74.4091
  7. D. Leibfried et al, Quantum dynamics of single trapped ions, Rev. Mod. Phys75, 281 (2003). https://doi.org/10.1103/RevModPhys.75.281
  8. F. Jelezko et al, Observation of Coherent Oscillations in Single Electron Spin, Phys. Rev. Lett.92 076401 (2004). https://doi.org/10.1103/PhysRevLett.92.076401
  9. M. V. G. Dutt et al, Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond, Science 316(5829), 1312 (2007). DOI: 10.1126/science.1139831
  10. B. E. Kane, A silicon-based nuclear spin quantum computer, Nature 393, 133 (1998). https://doi.org/10.1038/30156
  11. D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev.A57, 120 (1998). https://doi.org/10.1103/PhysRevA.57.120
  12. J.M. Elzerman et al, Semiconductor Few-Electron Quantum Dots as Spin Qubits, Lect. Notes Phys., 667, 25 (2005).
  13. Y. Nakamura et al, Coherent control of macroscopic quantum states in a single-Cooper-pair box, Nature 398, 786 (1999). https://doi.org/10.1038/19718
  14. Clarke, J. and Wilhelm, F. K., Superconducting quantum bits, Nature 453, 1031 (2008). DOI: 10.1038/nature07128
  15. Tarucha, S et al, Shell Filling and Spin Effects in a Few Electron Quantum Dot, Physical Review Letters 77, 3613 (1996). https://doi.org/10.1103/PhysRevLett.77.3613
  16. FujisawaT, et al, Spontaneous Emission Spectrum in Double Quantum Dot Devices, Science 282, 932 (1998). DOI: 10.1126/science.282.5390.932
  17. Hayashi T. et al, Coherent Manipulation of Electronic States in a Double Quantum Dot, Physical Review Letters 91, 226804 (200 3) https://doi.org/10.1103/PhysRevLett.91.226804
  18. D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev.A57, 120 (1998). https://doi.org/10.1103/PhysRevA.57.120
  19. J.M. Elzerman et al, Single-shot read-out of an individual electron spin in a quantum dot, Nature 430, 431 (2004). DOI: 10.1038/nature02693
  20. de Sousa, R. and Das Sarma, S., Theory of nuclear-induced spectral diffusion: Spin decoherence of phosphorus donors in Si and GaAs quantum dots, Physical Review B 68, 115322 (2003). https://doi.org/10.1103/PhysRevB.68.115322
  21. Simmons et al, Single-electron quantum dot in Si∕SiGe with integrated charge sensing, Applied Physics Letters 91, 213103 (2007). https://doi.org/10.1063/1.2816331
  22. Friesen, M., P. Rugheimer, D. E. Savage, M. G. Lagally, D. W.Van Der Weide, R. Joynt, and M. A. Eriksson,Practical design and simulation of silicon-based quantum-dot qubits, Phys. Rev. B 67, 121301(R), (2003). https://doi.org/10.1103/PhysRevB.67.121301
  23. Lim et al, Observation of the single-electron regime in a highly tunable silicon quantum dot, Applied Physics Letters 95, 242102, (2009b). DOI: 10.1063/1.3272858
  24. Zwanenburg et al, Gate-Defined Quantum Dots in Intrinsic Silicon, Nano Letters 9 (3), 1071 (2009b).https://doi.org/10.1021/nl070949k
  25. Erika Kawakami PhD Thesis on "Characterization of an electron spin qubit in Si/SiGe Quantum Dot", 2016.
  26. D. M. Zajac et al, Scalable Gate Architecture for a One-Dimensional Array of Semiconductor Spin Qubit, Phys. Rev. Appl., vol. 6, no. 5, p. 054013, Nov 2016. https://doi.org/10.1103/PhysRevApplied.6.054013
  27. R. Li, et al., A crossbar network for silicon quantum dot qubits, Science Advances 06 Jul 2018: Vol. 4, no. 7, eaar3960, DOI: 10.1126/sciadv.aar3960
  28. Maximilian Schlosshauer, Decoherence, the measurement problem, and interpretations of quantum mechanics, Rev Mod Phys.76, 1267 (2005). https://doi.org/10.1103/RevModPhy.76.1267
  29. J Yoneda et al, A Quantum-Dot Spin Qubit With Coherence Limited by Charge Noise and Fidelity Higher Than 99.9, Nat. Nanotechnol.13, 102 (2018). DOI: 10.1038/s41565-017-0014-x
  30. M. Veldhorst et al, A Two Qubit Logic Gate in Silicon, Nature (London)526, 410 (2015). DOI: 10.1038/nature15263
  31. D. M. Zajac, Resonantly driven CNOT gate for electron spins, Science359, 439 (2018). DOI: 10.1126/science.aao5965
  32. Reilly, D. Engineering the quantum-classical interface of solid-state qubits,npj Quantum Inf 1, 15011 (2015). https://doi.org/10.1038/npjqi.2015.11
  33. D. Conway Lamb et al., An FPGA-based instrumentation platform for use at deepcryogenic temperatures, Review of Scientific Instruments 87, 014701 (2016); https://doi.org/10.1063/1.4939094
  34. Harald Homulle et al., A reconfigurable cryogenic platform for the classical control of quantum processors Review of Scientific Instruments 88, 045103 (2017); https://doi.org/10.1063/1.4979611