Dynamics of generalized Poisson and Nambu–Poisson brackets
1997, Journal of Mathematical Physics
https://doi.org/10.1063/1.531960Abstract
The geometrical theory of constraints applied to the dynamics of vakonomic mechanical systems: The vakonomic bracket A unified setting for generalized Poisson and Nambu-Poisson brackets is discussed. It is proved that a Nambu-Poisson bracket of even order is a generalized Poisson bracket. Characterizations of Poisson morphisms and generalized infinitesimal automorphisms are obtained as coisotropic and Lagrangian submanifolds of product and tangent manifolds, respectively. © 1997 American Institute of Physics. ͓S0022-2488͑97͒04305-3͔
References (17)
- Y. Nambu, ''Generalized Hamiltonian dynamics,'' Phys. Rev. D 7, 2405-2412 ͑1973͒.
- L. Takhtajan, ''On foundations of the generalized Nambu mechanics,'' Commun. Math. Phys. 160, 295-315 ͑1994͒.
- J. A. de Azca ´rraga, A. M. Perelomov, and J. C. Pe ´rez Bueno, ''New generalized Poisson structures,'' J. Phys. A 29, L151-157 ͑1996͒.
- W. M. Tulczyjew, ''Les sous-varie ´te ´s Lagrangiennes et la dynamique Hamiltonienne,'' C. R. Acad. Sci. Paris, Se ´r. A 283, 15-18 ͑1976͒.
- J. Grabowski and P. Urbanski, ''Tangent lifts of Poisson and related structures,'' J. Phys. A 28, 6743-6777 ͑1995͒.
- G. Sa ´nchez de Alva ´rez, ''Poisson brackets and dynamics,'' in Dynamical Systems, Santiago de Chile, 1990, edited by R. Bamon, R. Labarca, J. Lewowicz, and J. Palis, Pitman Research Notes Mathematical Series Vol. 285 ͑Longmann, Harlow, 1993͒.
- R. Iba ´n `ez, M. de Leo ´n, J. C. Marrero, and D. Martı ´n de Diego, ''Coisotropic and Legendre-Lagrangian submanifolds and conformal Jacobi morphisms'' Preprint IMAFF-CSIC, July 1996.
- F. Cantrijn, L. A. Ibort, and M. de Leo ´n, ''On the geometry of multisymplectic manifolds,'' Preprint IMAFF-CSIC, January 1996.
- A. Weinstein, ''Coisotropic calculus and Poisson groupoids,'' J. Math. Soc. Jpn. 40, 705-727 ͑1988͒.
- I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics Vol. 118 ͑Birkha ¨user, Basel, 1994͒.
- P. Libermann and Ch. M. Marle, Symplectic Geometry and Analytical Mechanics ͑Kluwer, Dordrecht, 1987͒.
- A. Lichnerowicz, ''Les varie ´te ´s de Poisson et les alge ´bres de Lie associe ´es,'' J. Diff. Geom. 12, 253-300 ͑1977͒.
- K. H. Bhaskara and K. Viswanath, Poisson Algebras and Poisson Manifolds, Research Notes in Mathematics, Vol. 174 ͑Pitman, London, 1988͒.
- Ph. Gautheron, ''Some remarks concerning Nambu mechanics,'' Lett. Math. Phys. 37, 103-116 ͑1996͒.
- A. Weinstein, ''The local structure of Poisson manifolds,'' J. Diff. Geom. 18, 523-557 ͑1983͒. Erratum: ibid. 22, 255 ͑1985͒.
- H. J. Sussmann, ''Orbits of families of vector fields and integrability of distributions,'' Trans. Am. Math. Soc. 180, 171-188 ͑1973͒.
- K. Yano and S. Ishihara, Tangent and Cotangent Bundles ͑Marcel Dekker, New York, 1973͒.