Modular search space for automated design of neural architecture
2020, Proceedings of the O.S. Popov ОNAT
https://doi.org/10.33243/2518-7139-2020-1-1-37-44Abstract
The past years of research have shown that automated machine learning and neural architecture search are an inevitable future for image recognition tasks. In addition, a crucial aspect of any automated search is the predefined search space. As many studies have demonstrated, the modularization technique may simplify the underlying search space by fostering successful blocks' reuse. In this regard, the presented research aims to investigate the use of modularization in automated machine learning. In this paper, we propose and examine a modularized space based on the substantial limitation to seeded building blocks for neural architecture search. To make a search space viable, we presented all modules of the space as multisectoral networks. Therefore, each architecture within the search space could be unequivocally described by a vector. In our case, a module was a predetermined number of parameterized layers with information about their relationships. We applied the proposed modular search space to a genetic algorithm and evaluated it on the CIFAR-10 and CIFAR-100 datasets based on modules from the NAS-Bench-201 benchmark. To address the complexity of the search space, we randomly sampled twenty-five modules and included them in the database. Overall, our approach retrieved competitive architectures in averaged 8 GPU hours. The final model achieved the validation accuracy of 89.1% and 73.2% on the CIFAR-10 and CIFAR-100 datasets, respectively. The learning process required slightly fewer GPU hours compared to other approaches, and the resulting network contained fewer parameters to signal lightness of the model. Such an outcome may indicate the considerable potential of sophisticated ranking approaches. The conducted experiments also revealed that a straightforward and transparent search space could address the challenging task of neural architecture search. Further research should be undertaken to explore how the predefined knowledge base of modules could benefit modular search space. Анотація. За минулі роки дослідження підтвердили, що автоматизоване машинне навчання та пошук архітектури нейронної мережі-це неминуче майбутнє для завдань розпізнавання зображень. Крім того, одним із вирішальних аспектів будь-якого автоматизованого пошуку виявився попередньо визначений простір пошуку. Як показали багато обчислювальних досліджень, техніка модуляризації здатна спростити базовий простір пошуку, сприяючи повторному використанню успішних блоків. У зв'язку з цим, ця наукова стаття має на меті дослідити використання модуляризації в автоматизованому машинному навчанні. У цій статті ми пропонуємо та оцінюємо модульований простір, з огляду на істотне обмеження попередньо визначених блоків для пошуку архітектури. Щоб зробити простір пошуку істотним, ми показали всі модулі простору, як багато секторальні мережі. Тому кожну архітектуру в просторі пошуку однозначно описано вектором. У нашому випадку модуль є Radiuk P.M. Modular search space for automated design of neural architecture 37
References (42)
- Elsken, Thomas, et al. "Neural architecture search: A survey." Journal of Machine Learning Research, vol. 20, no. 55, 2019, pp. 1-21.
- Ren, Pengzhen, et al. A comprehensive survey of neural architecture search: Challenges and solutions. Preprint, submitted 1 June 2020, arXiv.org.
- Elsken, Thomas, et al. "Efficient multiobjective neural architecture search via Lamarckian evolution." Proceedings of the 7th International Conference on Learning Representations, ICLR-2019, Preprint, submitted 24 April 2018, arXiv.org.
- Wong, Catherine, et al. "Transfer learning with neural AutoML." Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS-2018, edited by Samy Bengio and Hanna M Wallach, Curran Associates Inc., 2018, pp. 8366-75.
- Veniat, Tom, and Ludovic Denoyer. "Learning time/memory-efficient deep architectures with budgeted super networks." Proceedings of the 31st 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR-2018, IEEE Inc., 2018, pp. 3492-500, DOI:10.1109/CVPR.2018.00368
- Tan, Mingxing, and Quoc Le. "EfficientNet: Rethinking model scaling for convolutional neural networks." Proceedings of the 36th International Conference on Machine Learning, edited by Kamalika Chaudhuri and Ruslan Salakhutdinov, ICML-2019, vol. 97, PMLR.org, 2019, pp. 6105-14.
- Dong, Xuanyi, and Yi Yang. "NAS-Bench-201: Extending the scope of reproducible neural architecture search." Proceedings of the 8th International Conference on Learning Representations, ICLR- 2020, Preprint, submitted 15 Jan. 2020, arXiv.org.
- Real, Esteban, et al. "Regularized evolution for image classifier architecture search." Proceedings of the 2019 AAAI Conference on Artificial Intelligence, IAAI-2019, vol. 33, no. 1, AAAI Press., 2019, pp. 4780-89, DOI:10.1609/aaai.v33i01.33014780.
- Zoph, B., et al. "Learning transferable architectures for scalable image recognition." Proceedings of the 31st 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR-2018, IEEE Inc., 2018, pp. 8697-710, D0I:10.1109/CVPR.2018.00907.
- Bello, Irwan, et al. "Neural optimizer search with reinforcement learning." Proceedings of the 34th International Conference on Machine Learning, ICML-2017, edited by Doina Precup and Yee Whye Teh, JMLR.org, 2017, pp. 459-468, D0I:10.5555/3305381.3305429
- Pham, Hieu, et al. "Efficient neural architecture search via parameters sharing." Proceedings of the 35th International Conference on Machine Learning, ICML-2018, edited by Jennifer Dy and Andreas Krause, vol. 80, JMLR.org, 2018, pp. 4095-104.
- Zhang, Xingcheng, et al. "PolyNet: A pursuit of structural diversity in very deep networks." Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR-2017, vol. 2017-Janua, IEEE Inc., 2017, pp. 3900-08, D0I:10.1109/CVPR.2017.415.
- Zhong, Zhao, et al. "Practical block-wise neural network architecture generation." Proceedings of the 31st 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR-2018, IEEE Inc., 2018, pp. 2423-32, D0I:10.1109/CVPR.2018.00257.
- Negrinho, Renato, et al. "Towards modular and programmable architecture search." Proceedings of the 33rd Conference on Neural Information Processing Systems, NIPS-2019, edited by H Wallach et al., Curran Associates Inc., 2019, pp. 13715-25.
- Wei, Tao, et al. "Modularized morphing of deep convolutional neural networks: A graph approach." IEEE Transactions on Computers, Preprint, submitted 16 April 2020, IEEE Inc., 2020, D0I:10.1109/TC.2020.2988006.
- Krizhevsky, Alex. "Learning multiple layers of features from tiny images."Master's Thesis, The University of Toronto, 2009. 60 p. 17. Romanuke, Vadim. "An attempt of finding an appropriate number of convolutional layers in CNNs based on benchmarks of heterogeneous datasets." Electrical, Control and Communication Engineering, vol. 14, no. 1, Sciendo, 2018, pp. 51-57, DOI:10.2478/ecce-2018-0006
- Romanuke, Vadim. "Appropriate number of standard 2 * 2 max pooling layers and their allocation in convolutional neural networks for diverse and heterogeneous datasets." Information Technology and Management Science, vol. 20, no. 1, Sciendo, 2017, pp. 12-19, D0I:10.1515/itms-2017-0002
- Radiuk, Pavlo. "Application of a genetic algorithm to search for the optimal convolutional neural network architecture." Herald of Khmelnytskyi National University, vol. 281, no. 1, 2020, pp. 7-11, D0I:10.31891/2307-5732-2020-281-1-7-11.
- Radiuk, Pavlo. "Impact of training set batch size on the performance of convolutional neural networks for diverse datasets." Information Technology and Management Science, vol. 20, no. 1, Sciendo, 2017, pp. 20-24, D0I:10.1515/itms-2017-0003. Наукові праці ОНАЗ ім. О.С. Попова, 2020, № 1 ЛІТЕРАТУРА:
- Elsken T. Neural architecture search: A survey / T. Elsken, J. H. Metzen, F. Hutter // Journal of Machine Learning Research. -2019. -Vol. 20, No. 55. -P. 1-21.
- Ren P. A comprehensive survey of neural architecture search: Challenges and solutions / P. Ren, Y. Xiao, X. Chang // Preprint. -2020.
- Elsken T. Efficient multiobjective neural architecture search via Lamarckian evolution / T. Elsken, J. H. Metzen, F. Hutter // Proceedings of the 7th International Conference on Learning Representations, ICLR-2019, New Orleans, LA, USA, 6-9 May 2019. -P. 1-23.
- Wong C. Transfer learning with neural AutoML / C. Wong, N. Houlsby, Y. Lu // Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS-2018, Montréal, QC, Canada, 2-8 Dec. 2018, Curran Associates Inc. -P. 8366-8375.
- Veniat T. Learning time/memory-efficient deep architectures with budgeted super networks / T. Veniat, L. Denoyer // Proceedings of the 31st 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR-2018, Salt Lake City, UT, USA, 18-23 June 2018, IEEE Inc. -P. 3492-3500. D0I:10.1109/CVPR.2018.00368
- Tan M. EfficientNet: Rethinking model scaling for convolutional neural networks / M. Tan, Q. Le // Proceedings of the 36th International Conference on Machine Learning, Long Beach, California, USA, PMLR.org. -P. 6105-6114.
- Dong X. NAS-Bench-201: Extending the scope of reproducible neural architecture search / X. Dong, Y. Yang // Proceedings of the 8th International Conference on Learning Representations, ICLR- 2020, Addis Ababa, Ethiopia, 26 April -1 May 2020. -P. 1 -16.
- Real E. Regularized evolution for image classifier architecture search / E. Real, A. Aggarwal, Y. Huang // Proceedings of the AAAI Conference on Artificial Intelligence, IAAI-2019, Honolulu, HI, USA, 27
- January -1 February 2019, AAAI Press. -P. 4780-4789. D0I:10.1609/aaai.v33i01.33014780.
- Zoph B. Learning transferable architectures for scalable image recognition / B. Zoph, V. Vasudevan, J. Shlens // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR-2018, Salt Lake City, UT, USA, 18-23 June 2018. -P. 8697-8710. D0I:10.1109/CVPR.2018.00907. 10. Bello I. Neural optimizer search with reinforcement learning / I. Bello, B. Zoph, V. Vasudevan // Proceedings of the 34th International Conference on Machine Learning, ICML-2017, Sydney, Australia, 7-11 Aug. 2017, JMLR.org. -P. 459-468. D0I:10.5555/3305381.3305429
- Pham H. Efficient neural architecture search via parameters sharing / H. Pham, M. Guan, B. Zoph // Proceedings of the 35th International Conference on Machine Learning, ICML-2018, Stockholmsmassan, Stockholm Sweden, 11-15 July 2018, JMLR.org. -P. 4095-4104.
- Zhang X. PolyNet: A pursuit of structural diversity in very deep networks / X. Zhang, Z. Li, C. Loy // Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR-2017, Honolulu, HI, USA, 21-26 July 2017, IEEE Inc. -P. 3900-3908. D0I:10.1109/CVPR.2017.415. 13. Zhong Z. Practical block-wise neural network architecture generation / Z. Zhong, J. Yan, W. Wu //
- IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE Inc. -P. 2423-2432. D0I:10.1109/CVPR.2018.00257.
- Negrinho R. Towards modular and programmable architecture search / R. Negrinho, M. Gormley, G. J. Gordon // Proceedings of the 33rd Conference on Neural Information Processing Systems, NIPS-2019, Vancouver, BC, Canada, 8-14 Dec. 2019, Curran Associates Inc. -P. 13715-13725.
- Wei T. Modularized morphing of deep convolutional neural networks: A graph approach / T. Wei, C. Wang, C. W. Chen // IEEE Transactions on Computers, Preprint. -2020. D0I:10.1109/TC.2020.2988006.
- Krizhevsky, A. Learning multiple layers of features from tiny images: master's thesis / A. Krizhevsky // The University of Toronto. -60 p. 17. Romanuke V. V. An attempt of finding an appropriate number of convolutional layers in CNNs based on benchmarks of heterogeneous datasets / V. V. Romanuke // Electrical, Control, and Communication Engineering. -2018. -Vol. 14, No. 1. -P. 51-57. D0I:10.2478/ecce-2018-0006.
- Radiuk P.M. Modular search space for automated design of neural architecture
- Romanuke V. V. Appropriate number of standard 2 * 2 max pooling layers and their allocation in convolutional neural networks for diverse and heterogeneous datasets / V. V. Romanuke // Information Technology and Management Science. -2017. -Vol. 20, No. 1. -P. 12-19. DOI:10.1515/itms-2017-0002
- Radiuk P. M. Application of a genetic algorithm to search for the optimal convolutional neural network architecture / P. M. Radiuk // Herald of Khmelnytskyi National University. -2020. -Vol. 281, No. 1.
- -P. 7-11. DOI:10.31891/2307-5732-2020-281-1-7-11.
- Radiuk P. M. Impact of training set batch size on the performance of convolutional neural networks for diverse datasets / P. M. Radiuk // Information Technology and Management Science. -2017. - Vol. 20, No.
- -P. 20-24. D0I:10.1515/itms-2017-0003. DOI 10.33243/2518-7139-2020-1-1-37-44 Наукові праці ОНАЗ ім. О.С. Попова, 2020, № 1
- 44 Radiuk P.M. Modular search space for automated design of neural architecture