Optical flow using color information: preliminary results
2008
https://doi.org/10.1145/1363686.1364064Abstract
Optical flow cannot be completely determined only from brightness information of images, without introducing some assumptions about the nature of movements in the scene. Color is an additional natural source of information that facilitates the solution of this problem. This work aims to illustrate the improvement in the optical flow estimation by using color information through experimental results.
References (17)
- REFERENCES
- J. Barron and R. Klette. Quantitative color optical flow. In 16th International Conference on Pattern Recognition, volume 4, pages 251-255, 2002.
- J.-Y. Bouguet. Pyramidal implementation of the Lucas Kanade feature tracker. OpenCV Documentation, Intel Corporation, Microprocessor Research Lab, 1999.
- E. M. d. O. Caldeira. Navegação Reativa de Robôs Móveis com Base no Fluxo Óptico. PhD thesis, UFES, Vitória, ES, Dec. 2002.
- H. Farid and E. P. Simoncelli. Differentiation of discrete multi-dimensional signals. IEEE Transactions on Image Processing, 13(4):496-508, 2004.
- M. Gokstorp and P.-E. Danielsson. Velocity tuned generalized sobel operators for multiresolution computation of optical flow. In IEEE International Conference on Image Processing, volume 2, pages 765-769, Austin, TX, USA, 1994.
- P. Golland and A. M. Bruckstein. Motion from color. Computer Vision and Image Understanding: CVIU, 68(3):346-362, Dec. 1997.
- B. Horn and B. Schunck. Determining optical flow. Artificial Intelligence, 16(1-3):185-203, August 1981.
- B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In IJCAI81, pages 674-679, 1981.
- H. N. Machado and G. A. S. Pereira. Medição das velocidades de um robô móvel utilizando sequências de imagens de sua superfície de movimentação. In XVI Congresso Brasileiro de Automática, pages 1025-1030, Salvador, BA, Brazil, Sept. 2006.
- N. Ohnishi and A. Imiya. Dominant plane detection from optical flow for robot navigation. Pattern Recognition Letters, 27(9):1009-1021, 2006.
- N. Ohta. Optical flow detection by color images. IEEE International Conference On Image Processing, pages 801-805, Sept. 1989.
- N. Ohta and S. Nishizawa. How much does color information help optical flow computation? IEICE Transactions on Information and Systems -Oxford Journal, 5:1759-1762, 2006.
- M. Sarcinelli-Filho, H. A. Schneebeli, and E. M. O. Caldeira. Cálculo do fluxo Óptico em tempo real e sua utilização na navegação de robôs móveis. In V Simpósio Brasileiro de Automação Inteligente, Canela, RS, Brazil, Nov. 2001.
- J. Shin, S. Kim, S. Kang, S.-W. Lee, J. Paik, B. Abidi, and M. Abidi. Optical flow-based real-time object tracking using non-prior training active feature model. Real-Time Imaging, 11(3):204-218, June 2005.
- E. P. Simoncelli. Design of multi-dimensional derivative filters. In IEEE International Conference on Image Processing, volume 1, pages 790-794, 1994.
- M. Tagliasacchi. A genetic algorithm for optical flow estimation. Image and Vision Computing, In Press, 2006.