Fall Detection Analysis Using a Real Fall Dataset
https://doi.org/10.1007/978-3-319-94120-2_32Abstract
This study focuses on the performance of a fall detection method using data coming from real falls performed by relatively young people and the application of this technique in the case of an elder person. Although the vast majority of studies concerning fall detection place the sensory on the waist, in this research the wearable device must be placed on the wrist because it's usability. A first pre-processing stage is carried out as stated in [1, 17]; this stage detects the most relevant points to label. This study analyzes the suitability of different models in solving this classification problem: a feed-forward Neural Network and a rule based system generated with the C5.0 algorithm. A discussion about the results and the deployment issues is included.
References (29)
- Abbate, S., Avvenuti, M., Bonatesta, F., Cola, G., Corsini, P., Vecchio, A.: A smartphone-based fall detection system. Pervasive Mob. Comput. 8(6), 883-899 (2012)
- Abbate, S., Avvenuti, M., Corsini, P., Light, J., Vecchio, A.: Wireless Sensor Net- works: Application -Centric Design. In: Monitoring of human movements for fall detection and activities recognition in elderly care using wireless sensor network: a survey, p. 22. Intech (2010)
- Bianchi, F., Redmond, S.J., Narayanan, M.R., Cerutti, S., Lovell, N.H.: Barometric pressure and triaxial accelerometry-based falls event detection. IEEE Trans. Neural Syst. Rehab. Eng. 18(6), 619-627 (2010)
- Bourke, A., O'Brien, J., Lyons, G.: Evaluation of a threshold-based triaxial accelerometer fall detection algorithm. Gait Posture 26, 194-199 (2007)
- Casilari, E., Santoyo-Ramón, J.A., Cano-García, J.M.: Umafall: a multisensor dataset for the research on automatic fall detec- tion. Procedia Comput. Sci. 110(Supplement C), 32-39 (2017). http://www.sciencedirect.com/science/article/pii/S1877050917312899
- Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321-357 (2002)
- Daher, M., Diab, A., Najjar, M.E.B.E., Khalil, M.A., Charpillet, F.: Elder tracking and fall detection system using smart tiles. IEEE Sens. J. 17(2), 469-479 (2017). http://ieeexplore.ieee.org/document/7733127/
- Delahoz, Y.S., Labrador, M.A.: Survey on fall detection and fall preven- tion using wearable and external sensors. Sensors 14(10), 19806-19842 (2014). http://www.mdpi.com/1424-8220/14/10/19806/htm
- Fang, Y.C., Dzeng, R.J.: A smartphone-based detection of fall portents for con- struction workers. Procedia Eng. 85, 147-156 (2014)
- Fang, Y.C., Dzeng, R.J.: Accelerometer-based fall-portent detection algorithm for construction tiling operation. Autom. Constr. 84, 214-230 (2017)
- González, S., Sedano, J., Villar, J.R., Corchado, E., Herrero, Á., Baruque, B.: Features and models for human activity recognition. Neurocomputing 167, 52-60 (2015)
- Hakim, A., Huq, M.S., Shanta, S., Ibrahim, B.: Smartphone based data mining for fall detection: Analysis and design. Procedia Comput. Sci. 105, 46-51 (2017). http://www.sciencedirect.com/science/article/pii/S1877050917302065
- Huynh, Q.T., Nguyen, U.D., Irazabal, L.B., Ghassemian, N., Tran, B.Q.: Opti- mization of an accelerometer and gyroscope-based fall detection algorithm. J. Sens. 2015, 8 (2015)
- Igual, R., Medrano, C., Plaza, I.: Challenges, issues and trends in fall detection systems. BioMed. Eng. OnLine 12(1), 66 (2013). http://www.biomedical-engineering-online.com/content/12/1/66
- Igual, R., Medrano, C., Plaza, I.: A comparison of public datasets for acceleration-based fall detection. Med. Eng. Phys. 37(9), 870-878 (2015). http://www.sciencedirect.com/science/article/pii/S1350453315001575
- Kangas, M., Konttila, A., Lindgren, P., Winblad, I., Jämsaä, T.: Comparison of low-complexity fall detection algorithms for body attached accelerometers. Gait Posture 28, 285-291 (2008)
- Khojasteh, S.B., Villar, J.R., de la Cal, E., González, V.M., Sedano, J., Yazgan, H.R.: Evaluation of a Wrist-based Wearable Fall Detection Method. In: 13th Inter- national Conference on Soft Computing Models in Industrial and Environmental Applications (2018, submitted)
- Kuhn, M.: The caret package (2017). http://topepo.github.io/caret/index.html. Accessed 15 Jan 2018
- Kumari, P., Mathew, L., Syal, P.: Increasing trend of wearables and multimodal interface for human activity monitoring: a review. Biosens. Bioelectron. 90(15), 298-307 (2017)
- Purch.com: Top ten reviews for fall detection of seniors (2018). http://www. toptenreviews.com/health/senior-care/best-fall-detection-sensors/
- R Development Core Team: R: A Language and Environment for Statistical Com- puting. R Foundation for Statistical Computing, Vienna, Austria (2008). http:// www.R-project.org. ISBN 3-900051-07-0
- Sabatini, A.M., Ligorio, G., Mannini, A., Genovese, V., Pinna, L.: Prior-to-and post-impact fall detection using inertial and barometric altimeter measurements. IEEE Trans. Neural Syst. Rehab. Eng. 24, 774-783 (2016)
- Sorvala, A., Alasaarela, E., Sorvoja, H., Myllyla, R.: A two-threshold fall detec- tion algorithm for reducing false alarms. In: Proceedings of 2012 6th International Symposium on Medical Information and Communication Technology (ISMICT) (2012)
- Vergara, P.M., de la Cal, E., Villar, J.R., González, V.M., Sedano, J.: An iot platform for epilepsy monitoring and supervising. J. Sens. 2017, 18 (2017)
- Villar, J.R., González, S., Sedano, J., Chira, C., Trejo, J.: Human Activity Recog- nition and Feature Selection for Stroke Early Diagnosis. In: Pan, J.S., Polycarpou, M.M., Woźniak, M., de Carvalho, A.C.P.L.F., Quintián, H., Corchado, E. (eds.) HAIS 2013. LNCS (LNAI), vol. 8073, pp. 659-668. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40846-5 66
- Villar, J.R., González, S., Sedano, J., Chira, C., Trejo-Gabriel-Galán, J.M.: Improv- ing human activity recognition and its application in early stroke diagnosis. Int. J. Neural Syst. 25(4), 1450036-1450055 (2015)
- Wu, F., Zhao, H., Zhao, Y., Zhong, H.: Development of a wearable-sensor- based fall detection system. Int. J. Telemedicine Appl. 2015, 11 (2015). https://www.hindawi.com/journals/ijta/2015/576364/
- Zhang, S., Wei, Z., Nie, J., Huang, L., Wang, S., Li, Z.: A review on human activity recognition using vision-based method. J. Healthc. Eng. 2017, 31 (2017)
- Zhang, T., Wang, J., Xu, L., Liu, P.: Fall detection by wearable sensor and one- class svm algorithm. In: Huang, D.S., Li, K., Irwin, G. (eds.) Intelligent Computing in Signal Processing and Pattern Recognition, Lecture Notes in Control and Infor- mation Systems, vol. 345, pp. 858-863. Springer, Berlin Heidelberg (2006)