Artificial intelligence in nuclear industry: Chimera or solution
https://doi.org/10.1016/J.JCLEPRO.2020.124022Abstract
Nuclear industry is in crisis and innovation is the central theme of its survival in future. Artificial intelligence has made a quantum leap in last few years. This paper comprehensively analyses recent advancement in artificial intelligence for its applications in nuclear power industry. A brief background of machine learning techniques researched and proposed in this domain is outlined. A critical assessment of various nuances of artificial intelligence for nuclear industry is provided. Lack of operational data from real power plant especially for transients and accident scenario is a major concern regarding the accuracy of intelligent systems. There is no universally agreed opinion among researchers for selecting the best artificial intelligence techniques for a specific purpose as intelligent systems developed by various researchers are based on different data set. Interlaboratory work frame or round-robin programme to develop the artificial intelligent tool for any specific purpose, based on the same data base, can be crucial in claiming the accuracy and thus the best technique. The black box nature of artificial techniques also poses a serious challenge for its implementation in nuclear industry, as it makes them prone to fooling.
References (113)
- Abbott, M.B., de Nordwall, H.J., Swets, B., 1983. On applications of artificial intelli- gence to the control and safety problems of nuclear power plants. Civ. Eng. Syst. 1, 69e82. https://doi.org/10.1080/02630258308970321.
- Adamantiades, A., Kessides, I., 2009. Nuclear power for sustainable development: current status and future prospects. Energy Pol. 37, 5149e5166. https://doi.org/ 10.1016/J.ENPOL.2009.07.052.
- Agrawal, A., Choudhary, A., 2016. Perspective: materials informatics and big data: realization of the "fourth paradigm" of science in materials science. Apl. Mater. 4 https://doi.org/10.1063/1.4946894, 053208.
- Akbari, R., Abbasi, M., Faghihi, F., Mirvakili, S.M., Mokhtari, J., 2018. A novel multi- objective optimization method, imperialist competitive algorithm, for fuel loading pattern of nuclear reactors. Prog. Nucl. Energy 108, 391e397. https:// doi.org/10.1016/j.pnucene.2018.06.016.
- Alcorn MA, Li Q, Gong Z, Wang C, Mai L, Ku W-S, et al. Strike (With) a Pose: Neural Networks Are Easily Fooled by Strange Poses of Familiar Objects. ArXiv.
- Andrew, A.M., 2001. An introduction to support vector machines and other kernel- based learning methods. Kybernetes 30, 103e115. https://doi.org/10.1108/ k.2001.30.1.103.6.
- Augutis, J., Marti sauskas, L., Krik stolaitis, R., 2015. Energy mix optimization from an energy security perspective. Energy Convers. Manag. 90, 300e314. https:// doi.org/10.1016/J.ENCONMAN.2014.11.033.
- Ayo-Imoru, R.M., Cilliers, A.C., 2018. Continuous machine learning for abnormality identification to aid condition-based maintenance in nuclear power plant. Ann. Nucl. Energy 118, 61e70. https://doi.org/10.1016/j.anucene.2018.04.002.
- Babazadeh, D., Boroushaki, M., Lucas, C., 2009. Optimization of fuel core loading pattern design in a VVER nuclear power reactors using Particle Swarm Opti- mization (PSO). Ann. Nucl. Energy 36, 923e930. https://doi.org/10.1016/ j.anucene.2009.03.007.
- Bae, I.-H., Na, M.-G., Lee, Y.-J., Park, G.-C., 2009. Estimation OF the power peaking factor IN a nuclear reactor using support vector machines and uncertainty analysis. Nucl. Eng. Technol. 41, 1181e1190. https://doi.org/10.5516/ NET.2009.41.9.1181.
- Bartlett, E.B., Uhrig, R.E., 1992. Nuclear power plant status diagnostics using an artificial neural network. Nucl. Technol. 97, 272e281. https://doi.org/10.13182/ NT92-A34635.
- Becker, S., Frew, B.A., Andresen, G.B., Zeyer, T., Schramm, S., Greiner, M., et al., 2014. Features of a fully renewable US electricity system: optimized mixes of wind and solar PV and transmission grid extensions. Energy 72, 443e458. https:// doi.org/10.1016/J.ENERGY.2014.05.067.
- Bernard, J.A., 1989. 6. Applications of artificial intelligence to reactor and plant control. Nucl. Eng. Des. 113, 219e227. https://doi.org/10.1016/0029-5493(89) 90073-3.
- Blum, C., 2005. Ant colony optimization: introduction and recent trends. Phys. Life Rev. 2, 353e373. https://doi.org/10.1016/J.PLREV.2005.10.001.
- Brown, C., Gabbar, H.A., 2014. Fuzzy logic control for improved pressurizer systems in nuclear power plants. Ann. Nucl. Energy 72, 461e466. https://doi.org/ 10.1016/J.ANUCENE.2014.05.024.
- Brown, T.W., Bischof-Niemz, T., Blok, K., Breyer, C., Lund, H., Mathiesen, B.V., 2018. Response to 'Burden of proof: a comprehensive review of the feasibility of 100% renewable-electricity systems. Renew. Sustain. Energy Rev. 92, 834e847. https://doi.org/10.1016/J.RSER.2018.04.113.
- Butler, K.T., Davies, D.W., Cartwright, H., Isayev, O., Walsh, A., 2018. Machine learning for molecular and materials science. Nature 559, 547e555. https:// doi.org/10.1038/s41586-018-0337-2.
- Cadini, F., Zio, E., Kopustinskas, V., Urbonas, R., 2008. A model based on boot- strapped neural networks for computing the maximum fuel cladding temper- ature in an Rmbk-1500 nuclear reactor accident. Nucl. Eng. Des. 238, 2165e2172. https://doi.org/10.1016/j.nucengdes.2008.01.018.
- Carlos Canedo Medeiros, J.A., Schirru, R., 2008. Identification of nuclear power plant transients using the Particle Swarm Optimization algorithm. Ann. Nucl. Energy 35, 576e582. https://doi.org/10.1016/j.anucene.2007.08.013.
- Castelvecchi, D., 2016. Can we open the black box of AI? Nature 538, 20e23. https:// doi.org/10.1038/538020a.
- Chen, F.-C., Jahanshahi, M.R., 2018. NB-CNN: deep learning-based crack detection using convolutional neural network and naïve Bayes data fusion. IEEE Trans. Ind. Electron. 65, 4392e4400. https://doi.org/10.1109/TIE.2017.2764844.
- Choi, G.P., Kim, D.Y., Yoo, K.H., Na, M.G., 2016. Prediction of hydrogen concentration in nuclear power plant containment under severe accidents using cascaded fuzzy neural networks. Nucl. Eng. Des. 300, 393e402. https://doi.org/10.1016/ j.nucengdes.2016.02.015.
- Choi, G.P., Yoo, K.H., Back, J.H., Na, M.G., 2017. Estimation of LOCA break size using cascaded fuzzy neural networks. Nucl. Eng. Technol. 49, 495e503. https:// doi.org/10.1016/j.net.2016.11.001.
- Cort es-Borda, D., Guill en-Gos albez, G., Jim enez, L., 2015. Assessment of nuclear energy embodied in international trade following a world multi-regional inputeoutput approach. Energy 91, 91e101. https://doi.org/10.1016/ J.ENERGY.2015.07.117.
- de Lima, A.M.M., Schirru, R., da Silva, F.C., Medeiros, J.A.C.C., 2008. A nuclear reactor core fuel reload optimization using artificial ant colony connective networks. Ann. Nucl. Energy 35, 1606e1612. https://doi.org/10.1016/j.anucene.2008.03.002.
- De Oliveira, I.M.S., Schirru, R., 2011. Swarm intelligence of artificial bees applied to in-core fuel management optimization. Ann. Nucl. Energy 38, 1039e1045. https://doi.org/10.1016/j.anucene.2011.01.009.
- Embrechts, M.J., Benedek, S., 2002. Hybrid identification of unlabeled nuclear po- wer plant transients with. Artif. Neural Network 51, 1438e1443. https://doi.org/ 10.1109/ijcnn.1998.685987.
- Erdoan, A., Geçkinli, M., 2003. A PWR reload optimisation code (XCore) using artificial neural networks and genetic algorithms. Ann. Nucl. Energy 30, 35e53. https://doi.org/10.1016/S0306-4549(02)00041-5.
- Fantoni, P.F., Mazzola, A., 1996. A pattern recognition-artificial neural networks based model for signal validation in nuclear power plants. Ann. Nucl. Energy 23, 1069e1076. https://doi.org/10.1016/0306-4549(96)84661-5.
- Forsberg, C., 2013. Hybrid systems to address seasonal mismatches between elec- tricity production and demand in nuclear renewable electrical grids. Energy Pol. 62, 333e341. https://doi.org/10.1016/J.ENPOL.2013.07.057.
- Funabashi, Y., Kitazawa, K., 2012. Fukushima in review: a complex disaster, a disastrous response. Bull. At. Sci. 68, 9e21. https://doi.org/10.1177/ 0096340212440359.
- Galar, D., Kumar, U., Galar, D., Kumar, U., 2017. Diagnosis. EMaintenance 235e310. https://doi.org/10.1016/B978-0-12-811153-6.00005-1.
- García-Olivares, A., Sol e, J., Osychenko, O., 2018. Transportation in a 100% renewable energy system. Energy Convers. Manag. 158, 266e285. https://doi.org/10.1016/ J.ENCONMAN.2017.12.053.
- Ghazali, A.B., Ibrahim, M.M., 2016. Fault detection and analysis in nuclear research facility using artificial intelligence methods. In: AIP Conf. Proc, vol. 1704. AIP Publishing LLC. https://doi.org/10.1063/1.4940079, 030010.
- Gomes, C.R., Canedo Medeiros, J.A.C., 2015. Neural network of Gaussian radial basis functions applied to the problem of identification of nuclear accidents in a PWR nuclear power plant. Ann. Nucl. Energy 77, 285e293. https://doi.org/10.1016/ j.anucene.2014.10.001.
- Gomez Fernandez, M., Tokuhiro, A., Welter, K., Wu, Q., 2017. Nuclear energy sys- tem's behavior and decision making using machine learning. Nucl. Eng. Des. 324, 27e34. https://doi.org/10.1016/J.NUCENGDES.2017.08.020.
- Guo, Z., Uhrig, R.E., 1992. Use of artificial neural networks to analyze nuclear power plant performance. Nucl. Technol. 99, 36e42. https://doi.org/10.13182/NT92- A34701.
- Hatami, E., Salarieh, H., Vosoughi, N., 2014. Design of a fault tolerated intelligent control system for a nuclear reactor power control: using extended Kalman filter. J. Process Contr. 24, 1076e1084. https://doi.org/10.1016/ j.jprocont.2014.04.012.
- Hatami, E., Vosoughi, N., Salarieh, H., 2016. Design of a fault tolerated intelligent control system for load following operation in a nuclear power plant. Int. J. Electr. Power Energy Syst. 78, 864e872. https://doi.org/10.1016/ j.ijepes.2015.11.073.
- Heard, B.P., Brook, B.W., Wigley, T.M.L., Bradshaw, C.J.A., 2017. Burden of proof: a comprehensive review of the feasibility of 100% renewable-electricity systems. Renew. Sustain. Energy Rev. 76, 1122e1133. https://doi.org/10.1016/ J.RSER.2017.03.114.
- Hedayat, A., Davilu, H., Barfrosh, A.A., Sepanloo, K., 2009. Estimation of research reactor core parameters using cascade feed forward artificial neural networks. Prog. Nucl. Energy 51, 709e718. https://doi.org/10.1016/j.pnucene.2009.03.004.
- Hines, J.W., Uhrig, R.E., 2005. Trends in computational intelligence in nuclear en- gineering. Prog. Nucl. Energy 46, 167e175. https://doi.org/10.1016/ J.PNUCENE.2005.03.002.
- Hines, J.W., Uhrig, R.E., 2005. Computational intelligence IN nuclear engineering. Hines JW, Uhrig RERERERERE, Hines JW, Uhrig RERERERERE Nucl. Eng. Technol. 37, 127e138. https://doi.org/10.1016/J.PNUCENE.2005.03.002.
- Jain, N.K., Nangia, U., Jain, J., 2018. A review of particle swarm optimization. J. Inst. Eng. Ser., B 99, 407e411. https://doi.org/10.1007/s40031-018-0323-y.
- Jayalal, M.L., Ramachandran, S., Rathakrishnan, S., Satya Murty, S.A.V., Sai Baba, M., 2015. Application of genetic algorithm methodologies in fuel bundle burnup optimization of pressurized heavy water reactor. Nucl. Eng. Des. 281, 58e71. https://doi.org/10.1016/j.nucengdes.2014.11.013.
- Jha, S., Topol, E.J., 2016. Adapting to artificial intelligence: radiologists and pathol- ogists as information specialists. JAMA, J. Am. Med. Assoc. 316, 2353e2354. https://doi.org/10.1001/jama.2016.17438.
- Jin, M., Cao, P., Short, M.P., 2019. Predicting the onset of void swelling in irradiated metals with machine learning. J. Nucl. Mater. 523, 189e197. https://doi.org/ 10.1016/j.jnucmat.2019.05.054.
- Kaelbling, L.P., Littman, M.L., Moore, A.W., 1996. Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237e285. https://doi.org/10.1613/jair.301.
- Karaboga, D., Basturk, B., 2007. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39, 459e471. https://doi.org/10.1007/s10898-007-9149-x.
- Kharecha, P.A., Hansen, J.E., 2013. Prevented mortality and greenhouse gas emis- sions from historical and projected nuclear power. Environ. Sci. Technol. 47, 4889e4895. https://doi.org/10.1021/es3051197.
- Khoshahval, F., Zolfaghari, A., Minuchehr, H., Sadighi, M., Norouzi, A., 2010. PWR fuel management optimization using continuous particle swarm intelligence. Ann. Nucl. Energy 37, 1263e1271. https://doi.org/10.1016/ j.anucene.2010.05.023.
- Khoshahval, F., Minuchehr, H., Zolfaghari, A., 2011. Performance evaluation of PSO and GA in PWR core loading pattern optimization. Nucl. Eng. Des. 241, 799e808. https://doi.org/10.1016/j.nucengdes.2010.12.023.
- Kim, D.Y., Kim, J.H., Yoo, K.H., Na, M.G., 2015. Prediction of hydrogen concentration in containment during severe accidents using fuzzy neural network. Nucl. Eng. Technol. 47, 139e147. https://doi.org/10.1016/j.net.2014.12.004.
- Kim, D.Y., Yoo, K.H., Choi, G.P., Back, J.H., Na, M.G., 2016. Reactor vessel water level estimation during severe accidents using cascaded fuzzy neural networks. Nucl. Eng. Technol. 48, 702e710. https://doi.org/10.1016/j.net.2016.02.002.
- Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. Optimization by simulated annealing. Science 220, 671e680. https://doi.org/10.1126/science.220.4598.671.
- Koo, Y Do, Yoo, K.H., Na, M.G., 2017. Estimation of residual stress in welding of dissimilar metals at nuclear power plants using cascaded support vector regression. Nucl. Eng. Technol. 49, 817e824. https://doi.org/10.1016/ j.net.2017.02.003.
- Koo, Y Do, An, Y.J., Kim, C.-H., Na, M.G., 2018. Nuclear reactor vessel water level prediction during severe accidents using deep neural networks. Nucl. Eng. Technol. 51, 723e730. https://doi.org/10.1016/j.net.2018.12.019.
- Kumar, A., Tsvetkov, P.V., 2015. A new approach to nuclear reactor design optimi- zation using genetic algorithms and regression analysis. Ann. Nucl. Energy 85, 27e35. https://doi.org/10.1016/j.anucene.2015.04.028.
- Kushida, K.E., 2014. The Fukushima nuclear disaster and the democratic party of Japan. Jpn. Polit. Econ. 40, 29e68. https://doi.org/10.2753/JES2329- 194X400102.
- Lin, C., Chang, H.-J., 2011. Identification of pressurized water reactor transient using template matching. Ann. Nucl. Energy 38, 1662e1666. https://doi.org/10.1016/ J.ANUCENE.2010.11.027.
- Lin, C., Hung, S.C., 2013. Automatic multi-cycle reload design of pressurized water reactor using particle swarm optimization algorithm and local search. Ann. Nucl. Energy 59, 255e260. https://doi.org/10.1016/j.anucene.2013.04.013.
- Lin, C., Lin, T.H., 2012. Automatic fuel lattice design in a boiling water reactor using a particle swarm optimization algorithm and local search. Ann. Nucl. Energy 47, 98e103. https://doi.org/10.1016/j.anucene.2012.04.012.
- Liu, S., Cai, J., 2012. Studies of fuel loading pattern optimization for a typical pres- surized water reactor (PWR) using improved pivot particle swarm method. Ann. Nucl. Energy 50, 117e125. https://doi.org/10.1016/j.anucene.2012.08.007.
- Liu, Y., Xie, C., Peng, M., Ling, S., 2014. Improvement of fault diagnosis efficiency in nuclear power plants using hybrid intelligence approach. Prog. Nucl. Energy 76, 122e136. https://doi.org/10.1016/J.PNUCENE.2014.05.001. Martín-del-Campo, C., Palomera-P erez, M. A., François, J.L., 2009. Advanced and flexible genetic algorithms for BWR fuel loading pattern optimization. Ann. Nucl. Energy 36, 1553e1559. https://doi.org/10.1016/j.anucene.2009.07.013.
- Mellit, A., Kalogirou, S.A., Hontoria, L., Shaari, S., 2009. Artificial intelligence tech- niques for sizing photovoltaic systems: a review. Renew. Sustain. Energy Rev. 13, 406e419. https://doi.org/10.1016/J.RSER.2008.01.006. Method and Apparatus for Diagnosing Plant Anomaly, 1997.
- Mo, K., Lee, S.J., Seong, P.H., 2007. A dynamic neural network aggregation model for transient diagnosis in nuclear power plants. Prog. Nucl. Energy 49, 262e272. https://doi.org/10.1016/J.PNUCENE.2007.01.002.
- M ol, A.C.A., Pereira, C.M.N.A., Freitas, V.G.G., Jorge, C.A.F., 2011. Radiation dose rate map interpolation in nuclear plants using neural networks and virtual reality techniques. Ann. Nucl. Energy 38, 705e712. https://doi.org/10.1016/ J.ANUCENE.2010.08.008.
- Montes, J.L., François, J.L., Ortiz, J.J., Martín-Del-Campo, C., Perusquía, R., 2011. Fuel lattice design in a boiling water reactor using an ant-colony-based system. Ann. Nucl. Energy 38, 1327e1338. https://doi.org/10.1016/j.anucene.2011.02.001.
- Moshkbar-Bakhshayesh, K., Ghofrani, M.B., 2013. Transient identification in nuclear power plants: a review. Prog. Nucl. Energy 67, 23e32. https://doi.org/10.1016/ J.PNUCENE.2013.03.017.
- Na, M.G., Shin, S.H., Jung, D.W., Kim, S.P., Jeong, J.H., Lee, B.C., 2004. Estimation of break location and size for loss of coolant accidents using neural networks. Nucl. Eng. Des. 232, 289e300. https://doi.org/10.1016/j.nucengdes.2004.06.007.
- Na, M.-G., Kim, J.-W., Lim, D.-H., 2007. Prediction OF residual stress for dissimilar metals welding at nuclear power plants using fuzzy neural network models. Nucl. Eng. Technol. 39, 337e348. https://doi.org/10.5516/NET.2007.39.4.337.
- Na, M.G., Kim, J.W., Lim, D.H., Kang, Y.-J., 2008. Residual stress prediction of dis- similar metals welding at NPPs using support vector regression. Nucl. Eng. Des. 238, 1503e1510. https://doi.org/10.1016/J.NUCENGDES.2007.12.003.
- Nabeshima, K., Suzudo, T., Suzuki, K., Türkcan, E., 1998. Real-time nuclear power plant monitoring with neural network. J. Nucl. Sci. Technol. 35, 93e100. https:// doi.org/10.1080/18811248.1998.9733829.
- Nguyen, A., Yosinski, J., Clune, J., June, 2015. Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: 2015 IEEE Conf. Comput. Vis. Pattern Recognit., vols. 07e12, pp. 427e436. https://doi.org/ 10.1109/CVPR.2015.7298640.
- Norouzi, A., Aghaie, M., Mohamadi Fard, A.R., Zolfaghari, A., Minuchehr, A., 2013. Nuclear reactor core optimization with parallel integer coded genetic algorithm. Ann. Nucl. Energy 60, 308e315. https://doi.org/10.1016/j.anucene.2013.05.013.
- Oliveira, MV de, Almeida, JCS de, 2013. Application of artificial intelligence tech- niques in modeling and control of a nuclear power plant pressurizer system. Prog. Nucl. Energy 63, 71e85. https://doi.org/10.1016/J.PNUCENE.2012.11.005.
- Ortiz-Servin, J.J., Pelta, D.A., Cadenas, J.M., Castillo, A., Montes-Tadeo, J.L., 2018. Methodology for integrated fuel lattice and fuel load optimization using population-based metaheuristics and decision trees. Prog. Nucl. Energy 104, 264e270. https://doi.org/10.1016/j.pnucene.2017.10.006.
- Pazirandeh, A., Tayefi, S., 2012. Optimizing the fuel management in a VVER-1000 reactor using an artificial neural network. Ann. Nucl. Energy 42, 112e118. https://doi.org/10.1016/j.anucene.2011.12.010.
- Peng, B-S Sen, Xia, H., Liu, Y.-K.K., Yang, B., Guo, D., Zhu, S.-M.M., 2018. Research on intelligent fault diagnosis method for nuclear power plant based on correlation analysis and deep belief network. Prog. Nucl. Energy 108, 419e427. https:// doi.org/10.1016/j.pnucene.2018.06.003.
- Pinheiro, V.H.C., Schirru, R., 2019. Genetic programming applied to the identifica- tion of accidents of a PWR nuclear power plant. Ann. Nucl. Energy 124, 335e341. https://doi.org/10.1016/j.anucene.2018.09.039.
- Poursalehi, N., Zolfaghari, A., Minuchehr, A., 2015. A novel optimization method, Effective Discrete Firefly Algorithm, for fuel reload design of nuclear reactors. Ann. Nucl. Energy 81, 263e275. https://doi.org/10.1016/j.anucene.2015.02.047.
- Reggia, J.A., 2013. The rise of machine consciousness: studying consciousness with computational models. Neural Network. 44, 112e131. https://doi.org/10.1016/ j.neunet.2013.03.011.
- Reifman, J., 1997. Survey of artificial intelligence methods for detection and iden- tification of component faults in nuclear power plants. Nucl. Technol. 119, 76e97. https://doi.org/10.13182/NT77-A35396.
- Rossini, N.S., Dassisti, M., Benyounis, K.Y., Olabi, A.G., 2012. Methods of measuring residual stresses in components. Mater. Des. 35, 572e588. https://doi.org/ 10.1016/J.MATDES.2011.08.022.
- Ruth, M.F., Zinaman, O.R., Antkowiak, M., Boardman, R.D., Cherry, R.S., Bazilian, M.D., 2014. Nuclear-renewable hybrid energy systems: opportunities, interconnections, and needs. Energy Convers. Manag. 78, 684e694. https:// doi.org/10.1016/J.ENCONMAN.2013.11.030.
- Sacco, W.F., Pereira, C.M.N., Soares, P.P., Schirru, R., 2002. Genetic algorithms applied to turbine extraction optimization of a pressurized-water reactor. Appl. Energy 73, 217e222. https://doi.org/10.1016/S0306-2619(02)00122-8.
- Safarzadeh, O., Zolfaghari, A., Norouzi, A., Minuchehr, H., 2011. Loading pattern optimization of PWR reactors using Artificial Bee Colony. Ann. Nucl. Energy 38, 2218e2226. https://doi.org/10.1016/j.anucene.2011.06.008.
- Safarzadeh, O., Zolfaghari, A., Zangian, M., Noori-Kalkhoran, O., 2014. Pattern optimization of PWR reactor using hybrid parallel Artificial Bee Colony. Ann. Nucl. Energy 63, 295e301. https://doi.org/10.1016/j.anucene.2013.08.011.
- Saghafi, M., Ghofrani, M.B., 2018. Real-time estimation of break sizes during LOCA in nuclear power plants using NARX neural network. Nucl. Eng. Technol. 51, 702e708. https://doi.org/10.1016/j.net.2018.11.017.
- Santosh, T.V., Vinod, G., Saraf, R.K., Ghosh, A.K., Kushwaha, H.S., 2007. Application of artificial neural networks to nuclear power plant transient diagnosis. Reliab. Eng. Syst. Saf. 92, 1468e1472. https://doi.org/10.1016/j.ress.2006.10.009.
- Santosh, T.V., Srivastava, A., Sanyasi Rao, V.V.S., Ghosh, A.K., Kushwaha, H.S., 2009. Diagnostic system for identification of accident scenarios in nuclear power plants using artificial neural networks. Reliab. Eng. Syst. Saf. 94, 759e762. https://doi.org/10.1016/j.ress.2008.08.005.
- S ¸eker, S., Ayaz, E., Türkcan, E., 2003. Elman's recurrent neural network applications to condition monitoring in nuclear power plant and rotating machinery. Eng. Appl. Artif. Intell. 16, 647e656. https://doi.org/10.1016/J.ENGAPPAI.2003.10.004.
- Souza, T.J., Medeiros, J.A.C.C., Gonçalves, A.C., 2017. Identification model of an accidental drop of a control rod in PWR reactors using thermocouple readings and radial basis function neural networks. Ann. Nucl. Energy 103, 204e211. https://doi.org/10.1016/j.anucene.2017.01.004.
- Suman, S., 2018. Hybrid nuclear-renewable energy systems: a review. J. Clean. Prod. 181, 166e177. https://doi.org/10.1016/J.JCLEPRO.2018.01.262.
- Suman, S., 2020. Deep neural network based prediction of burst parameters for Zircaloy-4 fuel cladding during loss-of-coolant accident. Nucl. Eng. Technol. https://doi.org/10.1016/j.net.2020.04.025.
- Takizawa, Y., Hattori, Y., Itoh, J., Fukumoto, A., 1994. An intelligent man-machine system for future nuclear power plants. Nucl. Technol. 107, 72e82. https:// doi.org/10.13182/NT94-A34999.
- Tian, X., Becerra, V., Bausch, N., Santhosh, T.V., Vinod, G., 2018. A study on the robustness of neural network models for predicting the break size in LOCA. Prog. Nucl. Energy 109, 12e28. https://doi.org/10.1016/j.pnucene.2018.07.004.
- Tong, J.C., Ranganathan, S., Tong, J.C., Ranganathan, S., 2013. Computational T cell vaccine design. Comput. Vaccine Des. 59e86 https://doi.org/10.1533/ 9781908818416.59.
- Uhrig, R.E., 1991. Neural networks and their potential application to nuclear power plants. AI-91 Front. Innov. Comput. Nucl. Ind. 439e448.
- Uhrig, R.E., Tsoukalas, L.H., 1999. Soft computing technologies in nuclear engi- neering applications. Prog. Nucl. Energy 34, 13e75. https://doi.org/10.1016/ S0149-1970(97)00109-1.
- Vuji c, J., Bergmann, R.M., Skoda, R., Mileti c, M., 2012. Small modular reactors: simpler, safer, cheaper? Energy 45, 288e295. https://doi.org/10.1016/ J.ENERGY.2012.01.078.
- Wu, S.C., Chen, K.Y., Lin, T.H., Chou, H.P., 2018. Multivariate algorithms for initiating event detection and identification in nuclear power plants. Ann. Nucl. Energy 111, 127e135. https://doi.org/10.1016/j.anucene.2017.08.066.
- Yamada, R., Tamakuma, Y., Iwaoka, K., Hosoda, M., Shiroma, Y., Akata, N., et al., 2017. Measurement system for alpha and beta emitters with continuous air sampling under different exposure situations. Appl. Radiat. Isot. 126, 79e82. https:// doi.org/10.1016/J.APRADISO.2017.01.002.
- Yoo, K.H., Koo, Y Do, Back, J.H., Na, M.G., 2017. Identification of LOCA and estimation of its break size by multiconnected support vector machines. IEEE Trans. Nucl. Sci. 64, 2610e2617. https://doi.org/10.1109/TNS.2017.2743098.
- Yoshikane, T., Yoshimura, K., 2018. Dispersion characteristics of radioactive mate- rials estimated by wind patterns. Sci. Rep. 8, 9926. https://doi.org/10.1038/ s41598-018-27955-4.
- Youssef, A., El-Telbany, M., Zekry, A., 2017. The role of artificial intelligence in photo- voltaic systems design and control: a review. Renew. Sustain. Energy Rev. 78, 72e79. https://doi.org/10.1016/J.RSER.2017.04.046.
- Yu, C., Wu, J., Zou, C., Cai, X., Ma, Y., Chen, J., 2019. Thorium utilization in a small modular molten salt reactor with progressive fuel cycle modes. Int. J. Energy Res. 4511. https://doi.org/10.1002/er.4511.
- Zeng, Y., Liu, J., Sun, K., Hu, L., 2018. Machine learning based system performance prediction model for reactor control. Ann. Nucl. Energy 113, 270e278. https:// doi.org/10.1016/J.ANUCENE.2017.11.014.
- Zhou, S., Li, D., Huang, X., 2017. Transient identification for nuclear power plants based on the similarity of matrices. In: Eighth Int. Conf. Intell. Control Inf. Process., IEEE; 2017, pp. 225e230. https://doi.org/10.1109/ICICIP.2017.8113946.
- Zio, E., Baraldi, P., 2005. Identification of nuclear transients via optimized fuzzy clustering. Ann. Nucl. Energy 32, 1068e1080. https://doi.org/10.1016/ j.anucene.2005.02.012.
- Zio, E., Di Maio, F., 2010. A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system. Reliab. Eng. Syst. Saf. 95, 49e57. https://doi.org/10.1016/J.RESS.2009.08.001.
- Zio, E., Di Maio, F., Stasi, M., 2010. A data-driven approach for predicting failure scenarios in nuclear systems. Ann. Nucl. Energy 37, 482e491. https://doi.org/ 10.1016/J.ANUCENE.2010.01.017.
- Ziver, A.K., Pain, C.C., Carter, J.N., De Oliveira, C.R.E., Goddard, A.J.H., Overton, R.S., 2004. Genetic algorithms and artificial neural networks for loading pattern optimisation of advanced gas-cooled reactors. Ann. Nucl. Energy 31, 431e457. https://doi.org/10.1016/j.anucene.2003.08.005.