Academia.eduAcademia.edu

Outline

A nonlocal theory of sediment transport on hillslopes

2010, Journal of Geophysical Research

https://doi.org/10.1029/2009JF001280

Abstract

1] Hillslopes are typically shaped by varied processes which have a wide range of eventbased downslope transport distances, some of the order of the hillslope length itself. We hypothesize that this can lead to a heavy-tailed distribution of displacement lengths for sediment particles. Here, we propose that such a behavior calls for a nonlocal computation of the sediment flux, where the sediment flux at a point is not strictly a function (linear or nonlinear) of the gradient at that point only but is an integral flux taking into account the upslope topography (convolution Fickian flux). We encapsulate this nonlocal behavior in a simple fractional diffusive model which involves fractional derivatives, with the order of differentiation (1 < a ≤ 2) dictating the degree of nonlocality (a = 2 corresponds to linear diffusion and strictly local dependence on slope). The model predicts an equilibrium hillslope profile which is parabolic close to the ridgetop and transits, at a short downslope distance, to a power law with an exponent equal to the parameter a of the fractional transport model. Hillslope profiles reported in previously studied sites support this prediction. Furthermore, we show that the nonlocal transport model gives rise to a nonlinear dependency on local slope and that variable upslope topography leads to widely varying rates of sediment flux for a given local hillslope gradient. Both of these results are consistent with available field data and suggest that nonlinearity in hillslope flux relationships may arise in part from nonlocal transport effects in which displacement lengths increase with hillslope gradient. The proposed hypothesis of nonlocal transport implies that field studies and models of sediment fluxes should consider the size and displacement lengths of disturbance events that mobilize hillslope colluvium.

References (65)

  1. Andrews, D. J., and R. C. Buckman (1987), Fitting degradation of shoreline scarps by a nonlinear diffusion model, J. Geophys. Res., 92(B12), 12,857-12,867, doi:10.1029/JB092iB12p12857.
  2. Baeumer, B., D. Benson, M. Meerschaert, and S. Wheatcraft (2001), Sub- ordinated advection-dispersion equation for contaminant transport, Water Resour. Res., 37(6), 1543-1550, doi:10.1029/2000WR900409.
  3. Benson, D. (1998), The fractional advection-dispersion equation: Develop- ment and applications, Ph.D. thesis, Univ. of Nevada, Reno.
  4. Benson, D. A., S. W. Wheatcraft, and M. M. Meerschaert (2000a), Appli- cation of a fractional advection-dispersion equation, Water Resour. Res., 36(6), 1403-1412, doi:10.1029/2000WR900031.
  5. Benson, D. A., S. W. Wheatcraft, and M. M. Meerschaert (2000b), The fractional-order governing equation of Lévy motion, Water Resour. Res., 36(6), 1413-1423, doi:10.1029/2000WR900032.
  6. Berkowitz, B., J. Klafter, R. Metzler, and H. Scher (2002), Physical pictures of transport in heterogeneous media: Advection-dispersion, random- walk, and fractional derivative formulations, Water Resour. Res., 38(10), 1191, doi:10.1029/2001WR001030.
  7. Biler, P., T. Funaki, and W. Woyczynski (1998), Fractal Burgers equations, J. Differential Equations, 148, 9-46, doi:10.1006/jd equation 1998.3458.
  8. Bouchaud, J.-P., and A. Georges (1990), Anomalous diffusion in disor- dered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195(4-5), 127-293, doi:10.1016/0370-1573(90)90099-N.
  9. Bradley, D. N., G. E. Tucker, and D. A. Benson (2010), Fractional disper- sion in a sand-bed river, J. Geophys. Res., 115, F00A09, doi:10.1029/ 2009JF001268.
  10. Campos, D., J. Fort, and V. Mendez (2006), Transport on fractal river net- works: Application to migration fronts, Theor. Popul. Biol., 69, 88-93, doi:10.1016/j.tpb.2005.09.001.
  11. Culling, W. E. H. (1960), Analytical theory of erosion, J. Geol., 68, 336- 344, doi:10.1086/626663.
  12. Cushman, J. H. (1991), On diffusion in fractal porous media, Water Resour. Res., 27(4), 643-644, doi:10.1029/91WR00162.
  13. Cushman, J. H. (1997), The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles, 467 pp., Kluwer Acad., Norwell, Mass.
  14. Cushman, J. H., and T. Ginn (2000), Fractional advection-dispersion equa- tion: A classical mass balance with convolution-Fickian flux, Water Resour. Res., 36(12), 3763-3766, doi:10.1029/2000WR900261.
  15. Dagan, G. (1997), Subsurface Flow and Transport: A Stochastic Approach, C a m b r i d g e U n i v . P r e s s , C a m b r i d g e , M a s s . , d o i : 10 . 1 0 1 7 / CBO9780511600081.
  16. Darwin, C., (1881), The Formation of Vegetable Mould Through the Action of Worms, John Murray, London.
  17. Deng, Z. Q., J. L. M. P. de Lima, and V. P. Singh (2005), Fractional kinetic model for first flush of stormwater pollutants, J. Environ. Eng., 131(2), 232-241, doi:10.1061/(ASCE)0733-9372(2005)131:2(232).
  18. Deng, Z. Q., J. L. M. P. de Lima, M. I. P. de Lima, and V. P. Singh (2006), A fractional dispersion model for overland solute transport, Water Resour. Res., 42, W03416, doi:10.1029/2005WR004146.
  19. Dietrich, W. E., D. G. Bellugi, L. S. Sklar, J. D. Stock, A. M. Heimsath, and J. J. Roering (2003), Geomorphic transport laws for predicting land- scape form and dynamics, in Prediction in Geomorphology, Geophys. Monogr. Ser., vol. 135, edited by P. Wilcock and R. Iverson, pp. 103- 132, AGU, Washington, D.C., doi:10.1029/135GM09.
  20. Feller, W. (1971), An Introduction to Probability Theory and Its Applica- tions, vol. 2, 2nd ed., Wiley, New York.
  21. Fleming, R. W., and A. M. Johnson (1975), Rates of seasonal creep of silty clay soil, Q. J. Eng. Geol., 8, 1-29, doi:10.1144/GSL.QJEG.1975.008.01.01.
  22. Foufoula-Georgiou, E., V. Ganti and P. Passalacqua (2008), Geomorphic transport laws: Non-local flux with classical mass balance, Rep. UMSI 2008/27, Supercomput. Inst., Univ. of Minn., Minneapolis.
  23. Furbish, D. J., P. K. Haff, W. E. Dietrich, and A. M. Heimsath (2009), Sta- tistical description of slope-dependent soil transport and the diffusion-like coefficient, J. Geophys. Res., 114, F00A05, doi:10.1029/2009JF001267.
  24. Gabet, E. J., D. J. Reichman, and E. W. Seabloom (2003), The effects of bioturbation on soil processes and sediment transport, Annu. Rev. Earth Planet. Sci., 31, 249-273, doi:10.1146/annurev.earth.31.100901.141314.
  25. Ganti, V., M. Meerchaert, E. Foufoula-Georgiou, E. Viparelli, and G. Parker (2010), Normal and anomalous diffusion of gravel tracer particles in rivers, J. Geophys. Res., 115, F00A12, doi:10.1029/2008JF001222.
  26. Gelhar, L. W., and C. L. Axness (1983), Three-dimensional stochastic analysis of macrodispersion in aquifers, Water Resour. Res., 19(1), 161-180, doi:10.1029/WR019i001p00161.
  27. Gilbert, G. K. (1909), The convexity of hilltops, J. Geol., 17, 344-350, doi:10.1086/621620.
  28. Grünwald, A. K. (1867), Uber "begrenzt" derivation und deren anwendung, Z. Angew. Math. Phys., 12, 441-480.
  29. Hack, J. T. (1960), Interpretation of erosional topography in humid temperate regions, Am. J. Sci., 258A, 80-97.
  30. Hack, J. T., and J. C. Goodlett (1960), Geomorphology and forest ecology of a mountain region in the central Appalachians, U.S. Geol. Surv. Prof. Pap., 347, 66 pp.
  31. Heimsath, A. M., W. E. Dietrich, K. Nishilzumi, and R. C. Finkel (1999), Cosmogenics nuclides, topography, and spatial variation of soil depth, Geomorphology, 27, 151-172, doi:10.1016/S0169-555X(98)00095-6.
  32. Heimsath, A. M., W. E. Dietrich, K. Nishiizumi, R. C. Finkel (2001), Stochastic processes of soil production and transport: Erosion rates, topographic variation, and cosmogenic nuclides in the Oregon Coast Range, Earth Surf. Processes Landforms, 26, 531-552.
  33. Howard, A. D. (1994), A detachment-limited model of drainage basin evo- lution, Water Resour. Res., 30(7), 2261-2285, doi:10.1029/94WR00757.
  34. Kirkby, M. J. (1967), Measurement and theory of soil creep, J. Geol., 75, 359-378, doi:10.1086/627267.
  35. Koons, P. O. (1989), The topographic evolution of collisional mountain belts: A numerical look at the southern Alps, New Zealand, Am. J. Sci., 288, 1041-1069.
  36. Lamperti, J. (1962), Semi-stable stochastic processes, Trans. Am. Math. Soc., 104, 62-78, doi:10.2307/1993933.
  37. Lashermes, B., E. Foufoula-Georgiou and W. E. Dietrich (2007), Channel network extraction from high resolution topography using wavelets, Geophys. Res. Lett., 34, L23S04, doi:10.1029/2007GL031140.
  38. McKean, J. A., W. E. Dietrich, R. C. Finkel, J. R. Southon, and M. W. Caffee (1993), Quantification of soil production and downslope creep rates from cosmogenic 10Be accumulations on a hillslope profile, Geology, 21, 343- 346, doi:10.1130/0091-7613(1993)021<0343:QOSPAD>2.3.CO;2.
  39. Meerschaert, M. M., and C. Tadjeran (2004), Finite difference approxima- tions of fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172, 65-77, doi:10.1016/j.cam.2004.01.033.
  40. Meerschaert, M. M., D. A. Benson, and B. Baeumer (1999), Multidimen- sional advection and fractional dispersion, Phys. Rev. E, 59, 5026- 5028, doi:10.1103/PhysRevE.59.5026.
  41. Meerschaert, M. M., D. A. Benson, and B. Baeumer (2001), Operator Le'vy motion and multiscaling anomalous diffusion, Phys. Rev. E, 63, 021112-021117, doi:10.1103/PhysRevE.63.021112.
  42. Metzler, R., and A. Compte (2000), Generalized diffusion-advection schemes and dispersive sedimentation: A fractional approach, J. Phys. Chem. B, 104(16), 3858-3865, doi:10.1021/jp993698f.
  43. Miller, K. S., and B. Ross (1993), An Introduction to the Fractional Calculus and Fractional Differential Equations, J. Wiley, New York.
  44. Norman, S. A., R. J. Schaetzl, and T. W. Small (1995), Effects of slope angle on mass movements by tree uprooting, Geomorphology, 14, 19- 27, doi:10.1016/0169-555X(95)00016-X.
  45. Oldham, K. B., and J. Spanier (1974), The Fractional Calculus, Academic, San Diego, Calif.
  46. Passalacqua, P., F. Porté-Agel, E. Foufoula-Georgiou, and C. Paola (2006), Application of dynamic subgrid-scale concepts from large-eddy simula- tion to modeling landscape evolution, Water Resour. Res., 42, W06D11, doi:10.1029/2006WR004879.
  47. Pekalski, A., and K. Sznajd-Weron (Eds.) (1999), Anomalous Diffusion: From Basics to Applications, Lect. Notes in Phys., vol. 519, Springer, Berlin, doi:10.1007/BFb0106828.
  48. Podlubny, I. (1999), Fractional Differential Equations, vol. 198, Academic, San Diego, Calif.
  49. Reneau, S. L., and W. E. Dietrich (1991), Erosion rates in the southern Oregon Coast Range: Evidence for an equilibrium between hillslope erosion and sediment yield, Earth Surf. Processes Landforms, 16, 307-322, doi:10.1002/esp.3290160405.
  50. Roering, J. J. (2008), How well can hillslope evolution models 'explain' topog- raphy? Simulating soil production and transport using high-resolution topo- graphic data, Geol. Soc. Am. Bull., 120, 1248-1262, doi:10.1130/B26283.1.
  51. Roering, J. J., and M. Gerber (2005), Fire and the evolution of steep, soil- mantled landscapes, Geology, 33, 349-352, doi:10.1130/G21260.1.
  52. Roering, J., J. Kirchner, and W. E. Dietrich (1999), Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology, Water Resour. Res., 35(3), 853-870.
  53. Schey, H. (1992), Div Grad Curl and All That: An Informal Text on Vector Calculus, 2nd ed., W. W. Norton, New York.
  54. Schumer, R., D. Benson, M. Meerschaert, and S. Wheatcraft (2001), Euler- ian derivation of the fractional advection-dispersion equation, J. Contam. Hydrol., 48, 69-88, doi:10.1016/S0169-7722(00)00170-4.
  55. Schumer, R., M. M. Meerschaert, and B. Baeumer (2009), Fractional advection-dispersion equations for modeling transport at the Earth sur- face, J. Geophys. Res., 114, F00A07, doi:10.1029/2008JF001246.
  56. Shlesinger, M. F., G. M. Zaslavsky, and U. Frisch (Eds.) (1995), Lévy Flights and Related Topics in Physics, Lect. Notes in Phys., vol. 450, Springer, Berlin, doi:10.1007/3-540-59222-9.
  57. Stark, C. P., E. Foufoula-Georgiou, and V. Ganti (2009), A nonlocal theory of sediment buffering and bedrock channel evolution, J. Geophys. Res., 114, F01029, doi:10.1029/2008JF000981.
  58. Su, N. (1995), Development of the Fokker-Planck equation and its solu- tions for modeling transport of conservative and reactive solutes in phys- ically heterogeneous media, Water Resour. Res., 31(12), 3025-3032, doi:10.1029/95WR02765.
  59. Tucker, G. E., and D. N. Bradley (2010), Trouble with diffusion: Reasses- sing hillslope erosion laws with a particle-based model, J. Geophys. Res., 115, F00A10, doi:10.1029/2009JF001264.
  60. Voller, V., and C. Paola (2010), Can anomalous diffusion describe deposi- tional fluvial profiles?, J. Geophys. Res., 115, F00A13, doi:10.1029/ 2009JF001278.
  61. Washburn, A. L. (1973), Periglacial Processes and Environments, 320 pp., Edward Arnold, London.
  62. Woyczynski, W. (1998), Burgers-KPZ Turbulence: Gottingen Lectures, Lect. Notes in Math., vol. 1700, Springer, Berlin.
  63. Yoo, K., R. Amundson, A. M. Heimsath, and W. E. Dietrich (2005), Pro- cess-based model linking pocket gopher (Thomomys bottae) activity to sediment transport and soil thickness, Geology, 33, 917-920, doi:10.1130/G21831.1.
  64. Yoo, K., R. Amundson, A. M. Heimsath, and W. E. Dietrich (2006), Spa- tial patterns of soil organic carbon on hillslopes: Integrating geomorphic processes and the biological C cycle, Geoderma, 130, 47-65, doi:10.1016/j.geoderma.2005.01.008.
  65. W. E. Dietrich, Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA. (efi@umn.edu) E. Foufoula-Georgiou and V. Ganti, Saint Anthony Falls Laboratory and National Center for Earth-surface Dynamics, Department of Civil Engineering, University of Minnesota, 2 Third Ave. SE, Minneapolis, MN 55414, USA.