Academia.eduAcademia.edu

Outline

Escape from attracting sets in randomly perturbed systems

2010, Physical Review E

https://doi.org/10.1103/PHYSREVE.82.046217

Abstract

The dynamics of escape from an attractive state due to random perturbations is of central interest to many areas in science. Previous studies of escape in chaotic systems have rather focused on the case of unbounded noise, usually assumed to have Gaussian distribution. In this paper, we address the problem of escape induced by bounded noise. We show that the dynamics of escape from an attractor's basin is equivalent to that of a closed system with an appropriately chosen "hole". Using this equivalence, we show that there is a minimum noise amplitude above which escape takes place, and we derive analytical expressions for the scaling of the escape rate with noise amplitude near the escape transition. We verify our analytical predictions through numerical simulations of two well known 2-dimensional maps with noise.

References (38)

  1. P. Hanggi J. Stat. Phys. 42, 105 (1986).
  2. H. A. Kramers Physica (Utrecht) 7, 284 (1940).
  3. P. Grasberger J. Phys. A 22, 3283 (1989).
  4. S. Kraut, U. Feudel, and C. Grebogi, Phys. Rev. E 59, 5253 (1999).
  5. S. Kraut, and U. Feudel, Phys. Rev. E 66, 015207 (2002).
  6. S. Kraut, and C. Grebogi, Phys. Rev. Lett. 92, 234101 (2004).
  7. J. Demaeyer, and P. Gaspard Phys. Rev. E 80, 031147 (2009).
  8. P. D. Beale Phys. Rev. A 40, 3998 (1989).
  9. N. Nagao, H. Nishimura, and N. Matsui, Neural Process- ing Lett 12, 267 (2000);
  10. S. J. Schiff and K. Jerger and D. H. Duong and et al., Nature 370, 615 (1994).
  11. O. Peters, and K. Christensen, Phys. Rev. E 66, 036120 (2002);
  12. P. Bak, K. Christensen, L. Danon, and T. Scan- lon, Phys. Rev. Lett 88, 178501-1 (2002);
  13. M. Anghel, Chaos Solit & Frac 19, 399 (2004).
  14. L. Billings, E. M. Bollt, and I. B. Schwartz, Phys. Rev. Lett 88, 234101 (2002);
  15. L. Billings, and I. B. Schwartz, Chaos 18, 023122 (2008).
  16. V. Araujo, Ann. Inst. Henri Poincaré, Analyse non linéaire 17, 307 (2000).
  17. C. Bonatti, L. J. Díaz, and M. Viana, Dynamics beyond uniform hyperbolicity Springer, Berlin (2005).
  18. J.-P. Eckmann, and D. Ruelle, Rev. of Modern Phys. 57, 617 (1985).
  19. R. Mañé, Ergodic theory of differentiable dynamics Springer Verlag (1987);
  20. G. Pianigiani, and J.A. Yorke, Trans. Am. Math. Soc. 252, 351 (1979);
  21. M. F. Demers, and L.-S. Young, Non- linearity 19, 377 (2006);
  22. A. E. Motter, and P. S. Letelier, Phys. Lett. A 285, 127 (2001);
  23. M. A. Sanjuán, T. Horita, and K. Aihara, Chaos 13, 17 (2003);
  24. L. A. Bunimovich, and C. P. Dettmann, Phys. Rev. Lett. 94, 100201 (2005);
  25. Europhys. Lett. 80, 40001 (2007);
  26. H. Zmarrou, and A. J. Homburg, Ergod. Th. & Dynam. Sys. 27, 1651 (2007);
  27. Discrete Cont. Dyn. Sys. B10, 719 (2008).
  28. E. G. Altmann, and T. Tél, Phys. Rev. Lett. 100, 174101 (2008);
  29. Phys. Rev. E 79, 016204 (2009).
  30. M. Kac, in Probability and Related Topics in Physi- cal Sciences, Intersciences Publishers, New York (1959), Chap IV.
  31. Z. Liu, Y-C Lai, L. Billings, and I. Schwartz Phys. Rev. Lett. 88, 124101 (2002).
  32. G. M. Zaslavskii, Phys. Lett. A 69, 145 (1978);
  33. B. Chirikov, Phys. Rep. A 52, 265 (1979).
  34. C. S. Rodrigues, A. P. S. de Moura, and C. Grebogi, Phys. Rev. E 80, 026205 (2009).
  35. E. Ott, Chaos in Dynamical Systems 2ed., Cambridge (2002).
  36. J. C. Sommerer, E. Ott, and C. Grebogi, Phys. Rev. A 43, 1754 (1991).
  37. The iteration of random maps can also be seen as an associated discrete time Markov process having a family {p ξ (•|x) : x ∈ U, ξ > 0} of transition probabilities, where every p ξ (•|x) is supported on U , a ξ-neighbourhood of f (x).
  38. More generally, for every continuous function ϕ : M → R.