Academia.eduAcademia.edu

Outline

Eigenelements of a General Aggregation-Fragmentation Model

Abstract

We consider a linear integro-differential equation which arises to describe both aggregation-fragmentation processes and cell division. We prove the existence of a solution (λ, U, φ) to the related eigenproblem. Such eigenelements are useful to study the long time asymptotic behaviour of solutions as well as the steady states when the equation is coupled with an ODE. Our study concerns a non-constant transport term that can vanish at x = 0, since it seems to be relevant to describe some biological processes like proteins aggregation. Non lower-bounded transport terms bring difficulties to find a priori estimates. All the work of this paper is to solve this problem using weighted-norms.

References (38)

  1. M. Adimy and L. Pujo-Menjouet. Asymptotic behaviour of a singular transport equation mod- elling cell division. Dis. Cont. Dyn. Sys. Ser. B, 3(3):439-456, 2003.
  2. F. Baccelli, D. R. McDonald, and J. Reynier. A mean-field model for multiple tcp connections through a buffer implementing red. Performance Evaluation, 49(1-4):77 -97, 2002.
  3. J. Banasiak and W. Lamb. On a coagulation and fragmentation equation with mass loss. Proc. Roy. Soc. Edinburgh Sect. A, 136(6):1157-1173, 2006.
  4. B. Basse, B.C. Baguley, E.S. Marshall, W.R. Joseph, B. van Brunt, G. Wake, and D. J. N. Wall. A mathematical model for analysis of the cell cycle in cell lines derived from human tumors. J. Math. Biol., 47(4):295-312, 2003.
  5. F. Bekkal Brikci, J. Clairambault, and B. Perthame. Analysis of a molecular structured population model with possible polynomial growth for the cell division cycle. Math. Comput. Modelling, 47(7- 8):699-713, 2008.
  6. F. Bekkal Brikci, J. Clairambault, B. Ribba, and B. Perthame. An age-and-cyclin-structured cell population model for healthy and tumoral tissues. J. Math. Biol., 57(1):91-110, 2008.
  7. T. Biben, J.-C. Geminard, and F. Melo. Dynamics of Bio-Polymeric Brushes Growing from a Cellular Membrane: Tentative Modelling of the Actin Turnover within an Adhesion Unit; the Podosome. J. Biol. Phys., 31:87-120, 2005.
  8. H. Brezis. Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. [Col- lection of Applied Mathematics for the Master's Degree].
  9. Masson, Paris, 1983. Théorie et appli- cations. [Theory and applications].
  10. V. Calvez, N. Lenuzza, M. Doumic, J.-P. Deslys, F. Mouthon, and B. Perthame. Prion dynamic with size dependency -strain phenomena. J. of Biol. Dyn., in press, 2008.
  11. V. Calvez, V. Lenuzza, D. Oelz, J.-P. Deslys, P. Laurent, F. Mouthon, and B. Perthame. Size distribution dependence of prion aggregates infectivity. Math. Biosci., 1:88-99, 2009.
  12. J. Clairambault, S. Gaubert, and T. Lepoutre. Comparison of perron and floquet eigenvalues in age structured cell division cycle models. Math. Model. Nat. Phenom., page in press, 2009.
  13. J. Clairambault, S. Gaubert, and B. Perthame. An inequality for the Perron and Floquet eigen- values of monotone differential systems and age structured equations. C. R. Math. Acad. Sci. Paris, 345(10):549-554, 2007.
  14. O. Destaing, F. Saltel, J.-C. Geminard, P. Jurdic, and F. Bard. Podosomes Display Actin Turnover and Dynamic Self-Organization in Osteoclasts Expressing Actin-Green Fluorescent Protein. Mol. Biol. of the Cell, 14:407-416, 2003.
  15. M. Doumic. Analysis of a population model structured by the cells molecular content. Math. Model. Nat. Phenom., 2(3):121-152, 2007.
  16. M. Doumic, B. Perthame, and J.P. Zubelli. Numerical solution of an inverse problem in size- structured population dynamics. Inverse Problems, 25(electronic version):045008, 2009.
  17. H. Engler, J. Pruss, and G.F. Webb. Analysis of a model for the dynamics of prions ii. J. of Math. Anal. and App., 324(1):98-117, 2006.
  18. M. Escobedo, Ph. Laurençot, S. Mischler, and B. Perthame. Gelation and mass conservation in coagulation-fragmentation models. J. Differential Equations, 195(1):143-174, 2003.
  19. M. Escobedo, S. Mischler, and B. Perthame. Gelation in coagulation and fragmentation models. Comm. Math. Phys., 231(1):157-188, 2002.
  20. J.Z. Farkas. Stability conditions for a nonlinear size-structured model. Nonlin. Anal. Real World App., 6:962-969, 2005.
  21. M.L. Greer, L. Pujo-Menjouet, and G.F. Webb. A mathematical analysis of the dynamics of prion proliferation. J. Theoret. Biol., 242(3):598-606, 2006.
  22. M. Gyllenberg and G.F. Webb. A Nonlinear Structured Population Model of Tumor Growth With Quiescence. J. Math. Biol, 28:671-694, 1990.
  23. P. Laurençot and B. Perthame. Exponential decay for the growth-fragmentation/cell-division equation. to appear in Comm. Math. Sc.
  24. P. Laurençot and C. Walker. Well-posedness for a model of prion proliferation dynamics. J. Evol. Equ., 7(2):241-264, 2007.
  25. N. Lenuzza. Modélisation de la réplication des Prions: implication de la dépendance en taille des agrégats de PrP et de l'hétérogénéité des populations cellulaires. PhD thesis, Paris, 2009.
  26. J. A. J. Metz and O. Diekmann, editors. The dynamics of physiologically structured populations, volume 68 of Lecture Notes in Biomathematics. Springer-Verlag, Berlin, 1986. Papers from the colloquium held in Amsterdam, 1983.
  27. P. Michel. Existence of a solution to the cell division eigenproblem. Math. Models Methods Appl. Sci., 16(7, suppl.):1125-1153, 2006.
  28. P. Michel. Optimal proliferation rate in a cell division model. Math. Model. Nat. Phenom., 1(2):23-44, 2006.
  29. P. Michel, S. Mischler, and B. Perthame. General entropy equations for structured population models and scattering. C. R. Math. Acad. Sci. Paris, 338(9):697-702, 2004.
  30. P. Michel, S. Mischler, and B. Perthame. General relative entropy inequality: an illustration on growth models. J. Math. Pures Appl. (9), 84(9):1235-1260, 2005.
  31. K. Pakdaman, B. Perthame, and D. Salort. Dynamics of a structured neuron population. (sub- mitted), 2009.
  32. B. Perthame. Transport equations in biology. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2007.
  33. B. Perthame and L. Ryzhik. Exponential decay for the fragmentation or cell-division equation. J. Differential Equations, 210(1):155-177, 2005.
  34. B. Perthame and T.M. Touaoula. Analysis of a cell system with finite divisions. Boletín SEMA, (44):55-79, 2008.
  35. B. Perthame and S.K. Tumuluri. Nonlinear renewal equations. In Selected topics in cancer modeling, Model. Simul. Sci. Eng. Technol., pages 65-96. Birkhäuser Boston, Boston, MA, 2008.
  36. B. Perthame and J.P. Zubelli. On the inverse problem for a size-structured population model. Inverse Problems, 23(3):1037-1052, 2007.
  37. J. Pruss, L. Pujo-Menjouet, G.F. Webb, and R. Zacher. Analysis of a model for the dynamics of prion. Dis. Cont. Dyn. Sys. Ser. B, 6(1):225-235, 2006.
  38. J.R. Silveira, G.J. Raymond, A.G. Hughson, R.E. Race, V.L. Sim, S.F. Hayes, and B. Caughey. The most infectious prion protein particles. Nature, 437(7056):257-261, September 2005.