Soft computing: Fuzzy Models and Applications
2019
https://doi.org/10.13140/RG.2.2.11342.41280…
7 pages
1 file
Sign up for access to the world's latest research
Abstract
The paper attempts to give protection of soft computing in the investigations of the scientist form the institutes of Informatics, Information technologies and Information and Communications Technologies of the Bulgarian Academy of Sciences. Presented is a short list of 60 publications on Soft Computing.
Related papers
2020
Soft computing is a study of the science of logic, thinking, analysis and research that combines real-world problems with biologically inspired methods. Soft computing is the main motivation behind the idea of conceptual intelligence in machines. As such, it is an extension of heuristics and the resolution of complex problems that are very difficult to model mathematically. Smooth computing tolerates printing; uncertainty and approximation that differ from manual calculation. Soft Computing enumerates techniques like ANN, Evolutionary computing, Fuzzy Logic and statistics, they are advantageous and separately applied techniques which are used together to solve problems which are complex, very easily. This article highlights the various soft computing ting techniques and emerging areas of soft computing ting where they have been successfully implemented.
Computer Science & Information Technology ( CS & IT ), 2013
Soft Computing refers to the science of reasoning, thinking and deduction that recognizes and uses the real world phenomena of grouping, memberships, and classification of various quantities under study. As such, it is an extension of natural heuristics and capable of dealing with complex systems because it does not require strict mathematical definitions and distinctions for the system components. It differs from hard computing in that, unlike hard computing, it is tolerant of imprecision, uncertainty and partial truth. In effect, the role model for soft computing is the human mind. The guiding principle of soft computing is: Exploit the tolerance for imprecision, uncertainty and partial truth to achieve tractability, robustness and low solution cost. The main techniques in soft computing are evolutionary computing, artificial neural networks, and fuzzy logic and Bayesian statistics. Each technique can be used separately, but a powerful advantage of soft computing is the complementary nature of the techniques. Used together they can produce solutions to problems that are too complex or inherently noisy to tackle with conventional mathematical methods. The applications of soft computing have proved two main advantages. First, it made solving nonlinear problems, in which mathematical models are not available, possible. Second, it introduced the human knowledge such as cognition, recognition, understanding, learning, and others into the fields of computing. This resulted in the possibility of constructing intelligent systems such as autonomous self-tuning systems, and automated designed systems. This paper highlights various areas of soft computing techniques.
Advances in Intelligent Systems and Computing
The series "Advances in Intelligent Systems and Computing" contains publications on theory, applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually all disciplines such as engineering, natural sciences, computer and information science, ICT, economics, business, e-commerce, environment, healthcare, life science are covered. The list of topics spans all the areas of modern intelligent systems and computing such as: computational intelligence, soft computing including neural networks, fuzzy systems, evolutionary computing and the fusion of these paradigms, social intelligence, ambient intelligence, computational neuroscience, artificial life, virtual worlds and society, cognitive science and systems, Perception and Vision, DNA and immune based systems, self-organizing and adaptive systems, e-Learning and teaching, human-centered and human-centric computing, recommender systems, intelligent control, robotics and mechatronics including human-machine teaming, knowledge-based paradigms, learning paradigms, machine ethics, intelligent data analysis, knowledge management, intelligent agents, intelligent decision making and support, intelligent network security, trust management, interactive entertainment, Web intelligence and multimedia. The publications within "Advances in Intelligent Systems and Computing" are primarily proceedings of important conferences, symposia and congresses. They cover significant recent developments in the field, both of a foundational and applicable character. An important characteristic feature of the series is the short publication time and worldwide distribution. This permits a rapid and broad dissemination of research results.
2001
The use of general descriptive names, regi stered names. trademarks. etc. in this publication does not imply, even in the absence of a specific statement. that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
IAEME PUBLICATION, 2020
Technological development in information system ensues because of hybrid intelligent systems in soft computing. Hybrid intelligent system is a kind of system which engages a blend of artificial intelligence subfield procedures and practices. Soft computing speaks about the confidence of computational techniques in various disciplines, which challenges in education, modeling, and investigating complex problems. High complexity soft computing applications have been brought as zero complexity due to the advancement of technological development in this era. This research article deals with the insight of soft computing branches, research applications and hybrid intelligent system that produces zero complexity which will create an inspiration to new researchers.
International Journal of Computational Intelligence Systems, 2010
This short note is devoted to introduce the discussion carried out along this special issue on the concept of Soft Computing by key researchers in the field. We shall stress some aspects of the conception and origins of Soft Computing, supported by the scientific relevance of its participants. The contributors will show their own view about a single question, What is Soft Computing?, covering answers from a general historical approach to the role of some specific tools within their expertise. This discussion represents an extremely interesting view about the concept of Soft Computing, its meaning, its related techniques and its relationship with close fields.
Advances in Soft Computing, 2009
Applied Soft Computing, 2011
Advances in Intelligent Systems and Computing, 2016
The purpose of this article is to provide an overview of soft computing applications in actuarial science. Soft computing (SC) refers to modes of computing in which precision is traded for tractability, robustness and ease of implementation. For the most part, SC encompasses the technologies of fuzzy logic, genetic algorithms, and neural networks, and it has emerged as an effective tool for dealing with control, modeling, and decision problems in complex systems. The paper ends with a general comment on the study. arc35_11_01a

Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.