Academia.eduAcademia.edu

Outline

Embryo development in dynamic microfluidic systems

https://doi.org/10.1016/J.SNB.2017.04.186

Abstract

Infertility has become a highly-spread disease but the efficiency of standard in vitro fertilization (IVF) cycles is only 30%, and their cost is very high. Recently, strategies based on microfluidics and dynamic in vitro systems have been proposed to improve the throughput of successful assisted hatchings. Here, these novel methods are presented and categorized in three main groups: microdroplet dynamic biore-actors, microchannel based cultures and microcontainers. In contraposition to the conventional static cultures, these devices introduce a dynamic microenvironment in order to mimic the physiological dynamic stimulations that are crucial for embryo development. The critical parameters-such as embryo density, medium flow rate, shear stress and microvibration frequency-are discussed and critically compared among the different systems, highlighting their strengths, drawbacks and potential impact on IVF.

References (41)

  1. Centers for Disease Control and Prevention, Infertility, (2016). www.cdc.gov/ nchs/fastats/infertility.htm.
  2. R.D. Nerenz, Omics in Reproductive Medicine, 1st ed., Elsevier Inc., 2016, http://dx.doi.org/10.1016/bs.acc.2016.05.001.
  3. M.P. Connolly, S. Hoorens, G.M. Chambers, The costs and consequences of assisted reproductive technology: an economic perspective, Hum. Reprod. Update 16 (2010) 603-613, http://dx.doi.org/10.1093/humupd/dmq013.
  4. A. Chandra, C.E. Copen, E.H. Stephen, Infertility and impaired fecundity in the United States, 1982-2010: data from the National Survey of Family Growth, Natl. Health Stat. Rep. (2013) 1--18, http://dx.doi.org/10.1093/humrep/ des207.
  5. J.E. Swain, Decisions for the IVF laboratory: comparative analysis of embryo culture incubators, Reprod. Biomed. Online 28 (2014) 535-547, http://dx.doi. org/10.1016/j.rbmo.2014.01.004.
  6. E. Bontekoe, M. Mantikou, S. Wely, S. Seshadri, Low oxygen concentrations for embryo culture in assisted reproductive technologies, Cochrane Database Syst. Rev. (2012), http://dx.doi.org/10.1002/14651858 (CD008950.pub2/pdf/standard).
  7. H.J. Leese, J.I. Tay, J. Reischl, S.J. Downing, Formation of Fallopian tubal fluid: role of a neglected epithelium, Reproduction 121 (2001) 339-346, http://dx. doi.org/10.1530/reprod/121.3.339.
  8. I. Zervomanolakis, H.W. Ott, D. Hadziomerovic, V. Mattle, B.E. Seeber, I. Virgolini, D. Heute, S. Kissler, G. Leyendecker, L. Wildt, Physiology of upward transport in the human female genital tract, Ann. N. Y. Acad. Sci. 1101 (2007) 1-20, http://dx.doi.org/10.1196/annals.1389.032.
  9. Y.S. Hur, J.H. Park, E.K. Ryu, S.J. Park, J.H. Lee, S.H. Lee, S.H. Yoon, C.Y. Hur, W.D. Lee, J.H. Lim, Effect of micro-vibration culture system on embryo development, J. Assist. Reprod. Genet. 30 (2013) 835-841, http://dx.doi.org/ 10.1007/s10815-013-0007-0.
  10. K. Holmvall, L. Camper, S. Johansson, J.H. Kimura, E. Lundgren-Akerlund, Chondrocyte and chondrosarcoma cell integrins with affinity for collagen type II and their response to mechanical stress, Exp. Cell Res. 221 (1995) 496-503, http://dx.doi.org/10.1006/excr.1995.1401.
  11. D.K. Gardner, M. Lane, Amino acids and ammonium regulate mouse embryo development in culture, Biol. Reprod. 48 (1993) 377-385, http://dx.doi.org/ 10.1095/biolreprod48.2.377.
  12. J.H.C. Wang, B.P. Thampatty, An introductory review of cell mechanobiology, Biomech. Model. Mechanobiol. 5 (2006) 1-16, http://dx.doi.org/10.1007/ s10237-005-0012-z.
  13. D. Mark, S. Haeberle, G. Roth, F. von Stetten, R. Zengerle, Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications, Chem. Soc. Rev. 39 (2010) 1153-1182, http://dx.doi.org/10.1039/b820557b.
  14. S. Halldorsson, E. Lucumi, R. Gómez-Sjöberg, R.M.T. Fleming, Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices, Biosens. Bioelectron. 63 (2015) 218-231, http://dx.doi.org/10.1016/j.bios. 2014.07.029.
  15. S.L. Angione, N. Oulhen, L.M. Brayboy, A. Tripathi, G.M. Wessel, Simple perfusion apparatus for manipulation, tracking, and study of oocytes and embryos, Fertil. Steril. 103 (2015) 281-290, http://dx.doi.org/10.1016/j. fertnstert.2014.09.039.
  16. Y. Xie, F. Wang, W. Zhong, E. Puscheck, H. Shen, D.A. Rappolee, Shear stress induces preimplantation embryo death that is delayed by the zona pellucida and associated with stress-activated protein kinase-mediated apoptosis, Biol. Reprod. 75 (2006) 45-55, http://dx.doi.org/10.1095/biolreprod.105.049791.
  17. D.L. Hickman, D.J. Beebe, S.L. Rodriguez-Zas, M.B. Wheeler, Comparison of static and dynamic medium environments for culturing of pre-implantation mouse embryos, Comp. Med. 52 (2002) 122-126 http://www.ncbi.nlm.nih. gov/pubmed/12022391.
  18. K.-W. Chang, P.-Y. Chang, H.-Y. Huang, C.-J. Li, C.-H. Tien, D.-J. Yao, S.-K. Fan, W. Hsu, C.-H. Liu, Womb-on-a-Chip biomimetic system for improved embryo culture and development, Sens. Actuators B Chem. 226 (2015) 218-226, http://dx.doi.org/10.1016/j.snb.2015.11.004.
  19. K. Matsuura, N. Hayashi, Y. Kuroda, C. Takiue, R. Hirata, M. Takenami, Y. Aoi, N. Yoshioka, T. Habara, T. Mukaida, K. Naruse, Improved development of mouse and human embryos using a tilting embryo culture system, Reprod. Biomed. Online 20 (2010) 358-364, http://dx.doi.org/10.1016/j.rbmo.2009.12.002.
  20. E. Isachenko, R. Maettner, V. Isachenko, S. Roth, R. Kreienberg, K. Sterzik, Mechanical agitation during the in vitro culture of human pre-implantation embryos drastically increases the pregnancy rate, Clin. Lab. 56 (2010) 569-576.
  21. S.J. Dai, C.L. Xu, J. Wang, Y.P. Sun, R.C. Chian, Effect of culture medium volume and embryo density on early mouse embryonic development: tracking the development of the individual embryo, J. Assist. Reprod. Genet. 29 (2012) 617-623, http://dx.doi.org/10.1007/s10815-012-9744-8.
  22. J.M. Wilson, D.D. Zalesky, C.R. Looney, K.R. Bondioli, R.R. Magness, Hormone secretion by preimplantation embryos in a dynamic in vitro culture system, Biol. Reprod. 46 (1992) 295-300.
  23. J.M. Lim, B.C. Reggio, R.A. Godke, W. Hansel, A continuous flow, perifusion culture system for 8-to 16-cell bovine embryos derived from in vitro culture, Theriogenology 46 (1996) 1441-1450, http://dx.doi.org/10.1016/S0093- 691X(96)00322-6.
  24. S. Raty, E.M. Walters, J. Davis, H. Zeringue, D.J. Beebe, S.L. Rodriguez-Zas, M.B. Wheeler, Embryonic development in the mouse is enhanced via microchannel culture, Lab Chip. 4 (2004) 186-190, http://dx.doi.org/10.1039/b316437c.
  25. M.S. Kim, C.Y. Bae, G. Wee, Y.-M. Han, J.-K. Park, A microfluidic in vitro cultivation system for mechanical stimulation of bovine embryos, Electrophoresis 30 (2009) 3276-3282, http://dx.doi.org/10.1002/elps. 200900157.
  26. S. Anand, S.K. Guha, Mechanics of transport of the ovum in the oviduct, Med. Biol. Eng. Comput. 16 (1978) 256-261, http://dx.doi.org/10.1007/BF02442424.
  27. B. Lindblom, L. Wilhelmsson, M. Wikland, L. Hamberger, N. Wiqvist, Prostaglandins and oviduct al function, Acta Obstet Gynecol. Scand. 62 (1983) 43-46, http://dx.doi.org/10.3109/00016348309155195.
  28. T. Koike, K. Matsuura, K. Naruse, H. Funahashi, In-vitro culture with a tilting device in chemically defined media during meiotic maturation and early development improves the quality of blastocysts derived from in-vitro matured and fertilized porcine oocytes, J. Reprod. Dev. 56 (2010) 552-557, http://dx.doi.org/10.1262/jrd.10-041H.
  29. Y.S. Heo, L.M. Cabrera, C.L. Bormann, C.T. Shah, S. Takayama, G.D. Smith, Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates, Hum. Reprod. 25 (2010) 613-622, http://dx.doi.org/10.1093/ humrep/dep449.
  30. W. Gu, X. Zhu, N. Futai, B.S. Cho, S. Takayama, Computerized microfluidic cell culture using elastomeric channels and Braille displays, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 15861-15866, http://dx.doi.org/10.1073/pnas.0404353101.
  31. Y. Mizobe, M. Yoshida, K. Miyoshi, Enhancement of cytoplasmic maturation of in vitro-matured pig oocytes by mechanical vibration, J. Reprod. Dev. 56 (2010) 285-290, http://dx.doi.org/10.1262/jrd.09-142A.
  32. T. Hara, K. Matsuura, T. Kodama, K. Sato, Y. Kikkawa, T. Muneto, J. Tanaka, K. Naruse, A tilting embryo culture system increases the number of high-grade human blastocysts with high implantation competence, Reprod. Biomed. Online 26 (2013) 260-268, http://dx.doi.org/10.1016/j.rbmo.2012.11.014.
  33. K.-W. Chang, P.-Y. Chang, H.-Y. Huang, C.-J. Li, C.-H. Tien, D.-J. Yao, S.-K. Fan, W. Hsu, C.-H. Liu, Womb-on-a-Chip biomimetic system for improved embryo culture and development, Sens. Actuators B Chem. 226 (2015) 218-226, http://dx.doi.org/10.1016/j.snb.2015.11.004.
  34. Y.K. Soong, H.S. Wang, S.Y. Cheng, H.J. Chien, Expression of insulin-like growth factor-binding protein-1 (IGFBP-1) mRNA in embryos and endometrial stromal cells, Mol. Hum. Reprod. 4 (1998) 153-157, http://dx.doi. org/10.1093/molehr/4.2.153.
  35. H.-Y. Huang, Y. Wen, J.S. Kruessel, F. Raga, Y.K. Soong, M.L. Polan, Interleukin (IL)-1ß regulation of IL-1ß and IL-1 receptor antagonist expression in cultured human endometrial stromal cells, J. Clin. Endocrinol. Metab. 86 (2001) 1387-1393, http://dx.doi.org/10.1210/jcem.86.3.7284.
  36. A.P. Contramaestre, F. Sifontes, R. Marín, M.I. Camejo, Secretion of stem cell factor and granulocyte-macrophage colony-stimulating factor by mouse embryos in culture: influence of group culture, Zygote 16 (2008) 297-301, http://dx.doi.org/10.1017/S0967199408004760.
  37. E. Chronopoulou, J.C. Harper, IVF culture media: past, present and future, Hum. Reprod. Update. 21 (2015) 39-55, http://dx.doi.org/10.1093/humupd/ dmu040.
  38. Y. Xie, E.E. Puscheck, D.A. Rappolee, Pipetting causes shear stress and elevation of phosphorylated stress-activated protein Kinase/Jun kinase in preimplantation embryos, Mol. Reprod. Dev. 74 (2007) 1287-1294, http://dx. doi.org/10.1002/mrd.20563.
  39. H.B. Croxatto, Physiology of gamete and embryo transport through the fallopian tube, Reprod. Biomed. Online 4 (2002) 160-169, http://dx.doi.org/ 10.1016/S1472-6483(10)61935-9.
  40. S.H.M. Kleijkers, E. Mantikou, E. Slappendel, D. Consten, J. van Echten-Arends, A.M. Wetzels, M. van Wely, L.J.M. Smits, A.P.A. van Montfoort, S. Repping, J.C.M. Dumoulin, S. Mastenbroek, Influence of embryo culture medium (G5 and HTF) on pregnancy and perinatal outcome after IVF: a multicenter RCT, Hum. Reprod. 0 (2016) 1-12, http://dx.doi.org/10.1093/humrep/dew156.
  41. P.M. Rijnders, C.A.M. Jansen, Influence of group culture and culture volume on the formation of human blastocysts: a prospective randomized study, Hum. Reprod. 14 (1999) 2333-2337, http://dx.doi.org/10.1093/humrep/14.9.2333.