The Pragmatic Turn in Explainable Artificial Intelligence (XAI)
2019, MInds and Machines, 29(3), 441-459
https://doi.org/10.1007/S11023-019-09502-WAbstract
In this paper I argue that the search for explainable models and interpretable decisions in AI must be reformulated in terms of the broader project of offering a pragmatic and naturalistic account of understanding in AI. Intuitively, the purpose of providing an explanation of a model or a decision is to make it understandable to its stake-holders. But without a previous grasp of what it means to say that an agent understands a model or a decision, the explanatory strategies will lack a well-defined goal. Aside from providing a clearer objective for XAI, focusing on understanding also allows us to relax the factivity condition on explanation, which is impossible to fulfill in many machine learning models, and to focus instead on the pragmatic conditions that determine the best fit between a model and the methods and devices deployed to understand it. After an examination of the different types of understanding discussed in the philosophical and psychological literature, I conclude that interpretative or approximation models not only provide the best way to achieve the objectual understanding of a machine learning model, but are also a necessary condition to achieve post-hoc interpretability. This conclusion is partly based on the shortcomings of the purely functionalist approach to post-hoc interpretability that seems to be predominant in most recent literature.
References (68)
- Achinstein, P. (1983). The nature of explanation. New York: Oxford University Press.
- Allahyari, H., & Lavesson, N. (2011). User-oriented assessment of classification model understandability. Proceedings of the 11th Scandinavian Conference on Artificial Intelligence. Amsterdam: IOS Press.
- Carter, J. A., & Gordon, E. C. (2016). Objectual understanding, factivity and belief. In: M. Grajner & P. Schmechtig (Eds.), Epistemic reasons, norms and goals (pp. 423-442). Berlin: De Gruyter.
- Caruana, R., Kangarloo, H., Dionisio, J. D. N., Sinha, U., & Johnson, D. (1999). Case-based explanations of non-case-based learning methods. In Proceedings of the AMIA Symposium (p. 212). American Medical Informatics Association.
- Castelfranchi, C., & Tan, Y-H. (Eds.). (2001). Trust and deception in virtual societies (pp. 157-168). Dordrecht: Kluwer Academic Publisher.
- Darwin, C. (1860/1903). Letter to Henslow, May 1860. In F. Darwin (Ed.), More letters of Charles Darwin, vol. I. New York: D. Appleton.
- De Graaf, M. M., & Malle, B. F. (2017). How people explain action (and Autonomous Intelligent Systems should too). In AAAI Fall Symposium on Artificial Intelligence for Human-Robot Interaction (pp. 19-26). Palo Alto: The AAAI Press.
- de Regt, H. W., & Dieks, D. (2005). A contextual approach to scientific understanding. Synthese, 144, 137-170.
- de Regt, H. W., Leonelli, S., & Eigner, K. (Eds.). (2009). Scientific understanding: Philosophical perspectives. Pittsburgh: University of Pittsburgh Press.
- Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608.
- Ehsan, U., Harrison, B., Chan, L., & Riedl, M. O. (2018). Rationalization: A neural machine translation approach to generating natural language explanations. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society (pp. 81-87). New York: ACM.
- Elgin, C. Z. (2004). True enough. Philosophical Issues, 14, 113-131
- Elgin, C. Z. (2007). Understanding and the facts. Philosophical Studies,132, 33-42.
- Elgin, C. Z. (2008). Exemplification, idealization, and scientific understanding. In M. Suárez (Ed.), Fictions in science: Philosophical essays on modelling and idealization (pp. 77- 90). London: Routledge.
- Elgin, C. Z. (2017). True enough. Cambridge: MIT Press.
- Falcone R., & Castelfranchi, C. (2001). Social trust: A cognitive approach. In C. Castelfranchi, & Tan, Y.-H. (Eds), Trust and deception in virtual societies (pp. 55-90). Springer: Dordrecht.
- Freitas, A. A. (2014). Comprehensible classification models: a position paper. ACM SIGKDD explorations newsletter, 15(1), 1-10.
- Fürnkranz, J., Kliegr, T., & Paulheim, H. (2018). On cognitive preferences and the plausibility of rule-based models. arXiv preprint arXiv:1803.01316.
- Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., & Kagal, L. (2019). Explaining explanation. An overview of interpretability of machine learning. arXiv preprint arXiv:1806.00069v3.
- Greco, J. (2010). Achieving knowledge. Cambridge: Cambridge University Press.
- Greco, J. (2012). Intellectual virtues and their place in philosophy. In C. Jäger & W. Löffler (Eds.), Epistemology: Contexts, values, disagreement: Proceedings of the 34 th International Wittgenstein Symposium (pp. 117-130). Heusenstamm: Ontos.
- Grimm, S. R. (2006). Is understanding a species of knowledge? British Journal for the Philosophy of Science, 57, 515-535.
- Grimm, S. R. (2011). Understanding. In S. Bernecker & D. Pritchard (Eds.), The Routledge companion to epistemology (pp. 84-94). New York: Routledge.
- Grimm, S. R. (2014). Understanding as knowledge of causes. In A. Fairweather (Ed.), Virtue epistemology naturalized: Bridges between virtue epistemology and philosophy of science. Dordrecht: Springer.
- Grimm, S. R. (Ed.). (2018). Making sense of the world: New essays on the philosophy of understanding. New York: Oxford University Press.
- Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box models. ACM Computing Surveys (CSUR), 51(5), Article 93.
- Hempel, C. G. (1965). Aspects of scientific explanation. New York: The Free Press.
- Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., & B. Baesens (2011). An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models. Decision Support Systems, 51(1), 141-154.
- Kelemen, D. (1999). Functions, goals, and intentions: Children's teleological reasoning about objects. Trends in Cognitive Science, 12, 461-468.
- Khalifa, K. (2012). Inaugurating understanding or repackaging explanation. Philosophy of Science, 79, 15-37.
- Kim, B. (2015). Interactive and interpretable machine learning models for human machine collaboration. PhD thesis, Massachusetts Institute of Technology.
- Kliegr, T., Bahník, Š., & Fürnkranz, J. (2018). A review of possible effects of cognitive biases on interpretation of rule-based machine learning models. arXiv preprint arXiv:1804.02969.
- Krening, S., Harrison, B., Feigh, K., Isbell, C., Riedl, M., & Thomaz, A. (2016). Learning from explanations using sentiment and advice in RL. IEEE Transactions on Cognitive and Developmental Systems, 9(1), 44-55.
- Kvanvig, J. (2003). The value of knowledge and the pursuit of understanding. New York: Cambridge University Press.
- Kvanvig, J. (2009). Response to critics. In A. Haddock, A. Millar, & D. Pritchard (Eds.), Epistemic value (pp. 339-351). New York: Oxford University Press.
- Lage, I., Chen, E., He, J., Narayanan, M., Kim, B., Gershman, S., & Doshi-Velez, F. (2019). An Evaluation of the Human-Interpretability of Explanation. arXiv preprint arXiv:1902.00006.
- Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., & Müller, K. R. (2019). Unmasking Clever Hans predictors and assessing what machines really learn. Nature communications, 10(1), 1096.
- Lepri, B., Oliver, N., Letouzé, E., Pentland, A., & Vinck, P. (2017). Fair, transparent, and accountable algorithmic decision-making processes: The premise, the proposed solutions, and the open challenges. Philosophy & Technology, 31, 611-627.
- Lewis, D. K. (1986). Causal explanation. In Philosophical papers, vol. II (pp. 214-240). New York: Oxford University Press.
- Lipton, P. (2009). Understanding without explanation. In H. W. de Regt, S. Leonelli, & K. Eigner (Eds.), Scientific understanding: Philosophical perspectives (pp. 43-63). Pittsburgh: University of Pittsburgh Press.
- Lipton, Z. C. (2016). The mythos of model interpretability. arXiv preprint arXiv:1606.03490.
- Lombrozo, T. & Gwynne, N. Z. (2014). Explanation and inference: Mechanistic and functional explanations guide property generalization. Frontiers in Human Neuroscience, 8, 700.
- Lombrozo, T., & Wilkenfeld, D. A. (forthcoming). Mechanistic vs. functional understanding. In S. R. Grimm (Ed.), Varieties of understanding: New perspectives from philosophy, psychology, and theology. New York: Oxford University Press.
- McAuley, J., & Leskovec, J. (2013). Hidden factors and hidden topics: understanding rating dimensions with review text. In Proceedings of the 7th ACM conference on recommender systems (pp. 165-172). New York: ACM.
- Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 267, 1-18.
- Miller, T., Howe, P., & Sonenberg, L. (2017). Explainable AI: Beware of inmates running the asylum. In Proceedings of the IJCAI-17 Workshop on Explainable AI (XAI) (pp. 36- 42). Accessed March 10, 2019 http://www.intelligentrobots.org/files/IJCAI2017/IJCAI- 17_XAI_WS_Proceedings.pdf
- Mittelstadt, B., Russell, C., & Wachter, S. (2019). Explaining explanations in AI. In Proceedings of the Conference on Fairness, Accountability, and Transparency (pp. 279- 288). New York: ACM.
- Mizrahi, M. (2012). Idealizations and scientific understanding. Philosophical Studies, 160, 237-252.
- Páez, A. (2006). Explanations in K. An analysis of explanation as a belief revision operation. Oberhausen: Athena Verlag.
- Páez, A. (2009). Artificial explanations: The epistemological interpretation of explanation in AI. Synthese, 170, 131-146.
- Pazzani, M. (2000). Knowledge discovery from data? IEEE Intelligent Systems, 15(2), 10- 13.
- Piltaver, R., Luštrek, M., Gams, M., & Martinčić-Ipšić, S. (2016). What makes classification trees comprehensible? Expert Systems with Applications: An International Journal, 62(C), 333-346.
- Potochnik, A. (2017). Idealization and the aims of science. Chicago: University of Chicago Press.
- Pritchard, D. (2008). Knowing the answer, Understanding and epistemic value. Grazer Philosophische Studien, 77, 325-339.
- Pritchard, D. (2014). Knowledge and understanding. In A. Fairweather (Ed.), Virtue scientia: Bridges between virtue epistemology and philosophy of science (pp. 315-328). Dordrecht: Springer.
- Quinonero-Candela, J., Sugiyama, M., Schwaighofer, A., & Lawrence, N. D. (Eds.). (2009). Dataset shift in machine learning. Cambridge: MIT Press.
- Reiss, J. (2012). The explanation paradox. Journal of Economic Methodology, 19, 43-62.
- Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?": Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1135-1144). New York: ACM.
- Salmon, W. C. (1971). Statistical explanation. In W. C. Salmon (Ed.), Statistical explanation and statistical relevance. Pittsburgh: Pittsburgh University Press.
- Salmon, W. C. (1984). Scientific explanation and the causal structure of the world. Princeton: Princeton University Press.
- Samek, W., Wiegand, T., & Müller, K. R. (2017). Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. arXiv preprint arXiv:1708.08296.
- Strevens, M. (2013). No understanding without explanation. Studies in the History and Philosophy of Science, 44, 510-515.
- van Fraassen, B. (1980). The scientific image. Oxford: Clarendon Press.
- Wilkenfeld, D. (2013). Understanding as representation manipulability. Synthese, 190, 997- 1016.
- Woodward, J. (2003). Making things happen. A theory of causal explanation. New York: Oxford University Press.
- Zagzebski, L. (2001). Recovering understanding. In M. Steup (Ed.), Knowledge, truth, and duty: Essays on epistemic justification, responsibility, and virtue. New York: Oxford University Press.
- Zagzebski, L. (2009). On epistemology. Belmont: Wadsworth.
- Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In 13 th European Conference on Computer Vision ECCV 2014 (pp. 818-833). Cham: Springer.