Academia.eduAcademia.edu

Outline

What can Palaeoclimate Modelling do for you?

2019, J Earth Systems and Environment

https://doi.org/10.1007/S41748-019-00093-1

Abstract

In modern environmental and climate science it is necessary to assimilate observational datasets collected over decades with outputs from numerical models, to enable a full understanding of natural systems and their sensitivities. During the twentieth and twenty-first centuries, numerical modelling became central to many areas of science from the Bohr model of the atom to the Lorenz model of the atmosphere. In modern science, a great deal of time and effort is devoted to developing, evaluating, comparing and modifying numerical models that help us synthesise our understanding of complex natural systems. Here we provide an assessment of the contribution of past (palaeo) climate modelling to multidisciplinary science and to society by answering the following question: What can palaeoclimate modelling do for you? We provide an assessment of how palaeoclimate modelling can develop in the future to further enhance multidisciplinary research that aims to understand Earth’s evolution, and what this may tell us about the resilience of natural and social systems as we enter the Anthropocene.

References (146)

  1. Adloff, M., Reick, C. H. and Claussen, M. (2018). Earth system model simulations show different feedback strengths of the terrestrial carbon cycle under glacial and interglacial conditions. Earth Syst. Dyn. 9, 413-425.
  2. Baatsen, M. et al. (2018). Equilibrium state and sensitivity of the simulated middle-to-late Eocene climate. Clim. Past Discuss.
  3. Banks, W.E., F. d'Errico, and J. Zilhão. (2013). Human-climate interaction during the Early Upper Paleolithic: testing the hypothesis of an adaptive shift between the Proto-Aurignacian and the Early Aurignacian. Journal of Human Evolution 64, 1, 39-55.
  4. Barron, E. J. (1985). Numerical climate modeling, a frontier in petroleum source rock prediction: Results based on Cretaceous simulations. AAPG Bulletin 69, 448-459.
  5. Berner, R. A. (1998). The carbon cycle and carbon dioxide over Phanerozoic time: the role of land plants. Philos. Trans. R. Soc. B Biol. Sci. 353, 75-82.
  6. Bitz, C.M., K. M. Shell, P. R. Gent, D. Bailey, G. Danabasoglu, K. C. Armour, M. M. Holland, and J. T. Kiehl. (2012). Climate sensitivity in the Community Climate System Model version 4. Journal of Climate 25, 3053-3070.
  7. Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe-Ouchi, A., Otto- Bliesner, B., and Zhao, Y. (2012). Evaluation of climate models using palaeoclimatic data. Nature Climate Change 2, 417.
  8. Brady, E.C., B.L. Otto-Bliesner, J.E. Kay, and N. Rosenbloom. (2013). Sensitivity to glacial forcing in the CCSM4. Journal of Climate 26, 1901-1924.
  9. Brigham-Grette, J. et al. (2013). Pliocene Warmth, Polar Amplification, and Stepped Pleistocene Cooling Recorded in NE Arctic Russia. Science 340, 1421-1427.
  10. Brown, J.L. et al. (2018). PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Nature Scientific Data 5, 180254.
  11. Burke, A., et al. (2017). Risky business: The impact of climate and climate variability on human population dynamics in Western Europe during the Last Glacial Maximum. Quaternary Science Reviews 164, 217-229.
  12. Burke, K.D. et al. (2018). Pliocene and Eocene provide best analogs for near-future climates. Proceedings of the National Academy of Sciences 115, 13288-13293.
  13. Barnosky, A. D. et al. (2011). Has the Earth's sixth mass extinction already arrived? Nature 471, 51- 7.
  14. Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. and Shabel, A. B. (2004). Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70-5.
  15. Buchanan, P. J. et al. (2016). The simulated climate of the Last Glacial Maximum and insights into the global marine carbon cycle. Clim. Past 12, 2271-2295.
  16. Charney, J G. et al. (1979). Carbon Dioxide and Climate: A Scientific Assessment. National Academy of Science, 22 pp.
  17. Church, J.A., P.U. Clark, A. Cazenave, J.M. Gregory, S. Jevrejeva, A. Levermann, M.A. Merrifield, G.A. Milne, R.S. Nerem, P.D. Nunn, A.J. Payne, W.T., Pfeffer, D. Stammer and A.S. Unnikrishnan. (2013).
  18. Sea Level Change. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)].
  19. Capron, E. et al. (2014). Temporal and spatial structure of multi-millennial temperature changes at high latitudes during the Last Interglacial. Quaternary Science Reviews 103, 116-133.
  20. Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024-6.
  21. Clark, P.U. et al. (2016). Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nature Clim Change 6, 360-369.
  22. Claussen, M., Kubatzki, C., Brovkin, V., Ganopolski, A., Hoelzmann, P. and Pachur, H. J. (1999). Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. Geophysical Research Letters 26, 14, 2037-2040.
  23. Contoux, C., Dumas, C., Ramstein, G., Jost, A., Dolan, A.M. (2015). Modelling Greenland ice sheet inception and sustainability during the Late Pliocene. Earth and Planetary Science Letters 424, 295- 305.
  24. Contoux, C. et al. (2013). Megalake Chad impact on climate and vegetation during the late Pliocene and the mid-Holocene. Clim. Past, 9, 1417-1430.
  25. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. and Totterdell, I. J. (2000). Erratum: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184-187.
  26. D'Hondt, S. and Arthur, M.A. (1996). Late Cretaceous Oceans and the Cool Tropic Paradox. Science 271, 5257, 1838-1841.
  27. Davis, M. B. and Shaw, R. G. (2001). Range shifts and adaptive responses to Quaternary climate change. Science 292, 673-9.
  28. Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. and Mace, G. M. (2011). Beyond predictions: biodiversity conservation in a changing climate. Science 332, 53-8.
  29. DeConto, R.M., Pollard, D. (2016). Contribution of Antarctica to past and future sea-level rise. Nature 531, 591-597.
  30. DeConto, R. M. and Pollard, D. (2003). Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO 2 . Nature 421, 245-249.
  31. Dolan, A.M. et al. (2015). Using results from the PlioMIP ensemble to investigate the Greenland Ice Sheet during the mid-Pliocene Warm Period. Climate of the Past 11, 3, 403-424.
  32. Dowsett, H.J. et al. (2013). Sea Surface Temperature of the mid-Piacenzian Ocean: A Data-Model Comparison. Scientific Reports 3.
  33. Dowsett, H. et al. (2016). The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction. Climate of the Past 12, 1519-1538.
  34. Dutton, A. et al. (2015). Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349.
  35. Eriksson, A., et al. (2012). Late Pleistocene climate change and the global expansion of anatomically modern humans. Proceedings of the National Academy of Sciences 109, 40, 16089-16094.
  36. Feng, R., B.L. Otto-Bliesner, T.L. Fletcher, C.R. Tabor, A.P. Ballantyne, and E.C. Brady. (2017). Amplified Late Pliocene terrestrial warmth in northern high latitudes from greater radiative forcing and closed Arctic Ocean gateways. Earth and Planetary Science Letters 466, 129-138.
  37. Finnegan, S. et al. (2015). Extinctions. Paleontological baselines for evaluating extinction risk in the modern oceans. Science 348, 6234, 567-570.
  38. Gates, W. L. (1976). The numerical simulation of ice-age climate with a global general circulation model. J. Atmos. Sci. 33, 1844-1873.
  39. Gavin, D. G. et al. (2014). Climate refugia: joint inference from fossil records, species distribution models and phylogeography. New Phytol. 204, 37-54.
  40. Goelzer, H., Huybrechts, P., Loutre, M.F., Fichefet, T. (2016). Last Interglacial climate and sea-level evolution from a coupled ice sheet-climate model. Clim Past 12, 2195-2213.
  41. Goodess, C.M., J.P. Palutikof, T.D. Davies. (1990). A first approach to assessing future climate states in the UK over very long timescales: input to studies of the integrity of radioactive waste repositories. Clim. Change 16, 115-140.
  42. Gregoire, L.J., Otto-Bliesner, B., Valdes, P.J., Ivanovic, R. (2016). Abrupt Bølling warming and ice saddle collapse contributions to the Meltwater Pulse 1a rapid sea level rise. Geophysical Research Letters, 43, 9130-9137.
  43. Gregoire, L.J., Payne, A.J., Valdes, P.J. (2012). Deglacial rapid sea level rises caused by ice-sheet saddle collapses. Nature 487, 219-222.
  44. Grove, M. (2011). Change and variability in Plio-Pleistocene climates: modelling the hominin response. Journal of Archaeological Science 38, 11, 3038-3047.
  45. Guillot D., Rajaratnam, B and Emile-Geay, J. (2015). Statistical paleoclimate reconstructions via Markov random fields. Ann. Appl. Stat. 9, 1, 324-352.
  46. Hansen, J. et al. (2008). Target Atmospheric CO 2 : Where Should Humanity Aim?. Open Atmos. Sci. J. 2, 217-231.s
  47. Harris, J. et al. (2017). Paleogeography and Paleo-Earth Systems in the Modeling of Marine Paleoproductivity: A Prerequisite for the Prediction of Petroleum Source Rocks. In Mahdi A. AbuAli, Isabelle Moretti and Hege M. Nordgård Bolås (eds.). Petroleum Systems Analysis-Case Studies. AAPG Memoir 114, 37-60.
  48. Harrison, S. P., Bartlein, P. J. and Prentice, I. C. (2016). What have we learnt from palaeoclimate simulations? J. Quaternary Sci., 31, 363-385.
  49. Harrison, S. P. and Prentice, C. I. (2003). Climate and CO 2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations. Glob. Chang. Biol. 9, 983-1004.
  50. Haywood, A. M. et al. (2016). Pliocene Model Intercomparison (PlioMIP) Phase 2: scientific objectives and experimental design. Climate of the Past 12, 663-675.
  51. Haywood, A.M. et al. (2013). Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project. Clim. Past 9, 191-209.
  52. Haywood A.M., Valdes, P.J., Markwick, P.J. (2004). Cretaceous (Wealden) climates: a modelling perspective. Cretaceous Research 25, 3, 303-311.
  53. Herbert, T.D., Ng, G., Cleaveland Peterson, L. (2015). Evolution of Mediterranean sea surface temperatures 3.5-1.5 Ma: Regional and hemispheric influences. Earth Planet. Sci. Lett. 409, 307-318.
  54. Hoeting, J.A. et al. (1999). Bayesian Model Averaging: A Tutorial. Statistical Science 14, 4, 382-401.
  55. Horton, R., Little, C., Gornitz, V., Bader, D., Oppenheimer, M. (2015). New York City Panel on Climate Change 2015 Report Chapter 2: Sea Level Rise and Coastal Storms. Annals of the New York Academy of Sciences 1336, 36-44.
  56. Huber, M. and Caballero, R. (2011). The early Eocene equable climate problem revisited. Clim. Past 7, 603-633.
  57. Hughes, J.K., et al. (2007). Investigating early hominin dispersal patterns: developing a framework for climate data integration. Journal of Human Evolution 53, 5, 465-474.
  58. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K.
  59. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)].
  60. Jackson, S. T. and Blois, J. L. (2015). Community ecology in a changing environment: Perspectives from the Quaternary. Proc. Natl. Acad. Sci. 112, 4915-4921.
  61. Janson, L. and Rajaratnam B. (2014). A Methodology for Robust Multiproxy Paleoclimate Reconstructions and Modeling of Temperature Conditional Quantiles. Journal of the American Statistical Association 109, 505, 63-77.
  62. Jouzel, J. et al. (2007). Orbital and millennial Antarctic climate variability over the last 800,000 years. Science 317, 793-796.
  63. Kageyama, M. et al. (2018). The PMIP4 contribution to CMIP6 -Part 1: Overview and over-arching analysis plan. Geosci. Model Dev., 11, 1033-1057.
  64. Kageyama, M. et al. (2012). Mid-Holocene and Last Glacial Maximum climate simulations with the IPSL model part II: model-data comparisons. Climate Dynamics 40, 1-27.
  65. Kennett, J.P. (1977). Cenozoic evolution of Antarctic glaciation, the circum-Antarctic oceans and their impact on global paleoceanography. Journal of Geophysical Research 82, 3843-3859.
  66. Klink, H.J. (2008). Vegetationsgeographie. 4th Edition, Westermann, Braunschweig.
  67. Kopp, R.E. et al. (2010). The impact of Greenland melt on regional sea level: a partially coupled analysis of dynamic and static equilibrium effects in idealized water-hosing experiments. Climatic Change 103, 619-625.
  68. Kozar, M.E., Mann, M.E., Emanuel, K.A., Evans, J.L. (2013). Long-term variations of North Atlantic tropical cyclone activity downscaled from a coupled model simulation of the last millennium. J. Geophys Res. 118, 13383-13392.
  69. Kutzbach, J.E., Street-Perrott, F.A. (1985). Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr BP. Nature 317, 130-134.
  70. Kutzbach, J.E. (1980). Estimates of past climate at Paleolake Chad, North Africa, based on a hydrological and energy-balance model. Quaternary Research 14, 2, 210-223.
  71. Larrasoaña, J.C., A.P. Roberts, and E.J. Rohling. (2013). Dynamics of Green Sahara Periods and their role in Hominin evolution. PLOS ONE 8, 10, e76514.
  72. Laskar, J., Fienga, A., Gastineau, M., Manche, H. (2011). La2010: a new orbital solution for the long- term motion of the Earth. Astronomy and Astrophysics 532, A89.
  73. Lawing, A. M. & Polly, P. D. (2011). Pleistocene climate, phylogeny, and climate envelope models: an integrative approach to better understand species' response to climate change. PLoS One 6, e28554.
  74. Le Quéré, C. et al. (2009). Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2, 831-836.
  75. Lemoalle, J., Bader, J.C., Leblanc. M., Sedick, A. (2012). Recent changes in Lake Chad: Observations, simulations and management options (1973-2011). Global and Planetary Change 80-81, 247-254.
  76. Lenton, T. M. and Daines, S. J. (2017). Biogeochemical Transformations in the History of the Ocean. Ann. Rev. Mar. Sci. 9, 31-58.
  77. Lindborg, T. et al. (2005). Climate change and landscape development in post-closure safety assessment of solid radioactive waste disposal: Results of an initiative of the IAEA. Journal of Environmental Radioactivity 183, 41-53.
  78. Lisiecki, L. E., and M. E. Raymo. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18 O records. Paleoceanography 20, PA1003.
  79. Lunt, D.J. et al. (2017). DeepMIP: experimental design for model simulations of the EECO, PETM, and pre-PETM. Geoscientific Model Development 10, 889-901.
  80. Lunt, D.J., Haywood, A.M., Schmidt, G.A., Salzmann, U., Valdes, P.J., Dowsett, H.J. (2010). Earth system sensitivity inferred from Pliocene modelling and data. Nat Geosci. 3, 1, 60-64.
  81. Lunt, D.J., Flecker, R.M. and Clift, P.D. (2010). The impacts of Tibetan uplift on palaeoclimate proxies in C.D.P.R Tada and H. Zheng (eds). Monsoon Evolution and Tectonic-Climate Linkage in Asia 342, GSL, 279 -291.
  82. Lunt, D. J., Foster, G. L., Haywood, A. M. and Stone, E. J. (2008). Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO 2 levels. Nature 454, 1102-1105.
  83. Manabe, S., Terpstra, T.B. (1974). Effects of mountains on general circulation of atmosphere as identified by numerical experiments. Journal of the atmospheric sciences 31, 1, 3-42.
  84. Mannshardt, E., Craigmile, P.F. and Tingley, M.P. (2013). Statistical modeling of extreme value behavior in North American tree-ring density series. Climatic Change 117, 4, 843-858.
  85. Martinez-Meyer, E., Townsend Peterson, A. and Hargrove, W. W. (2004). Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Glob. Ecol. Biogeogr. 13, 305-314.
  86. Maslin, M.A. and B. Christensen. (2007). Tectonics, orbital forcing, global climate change, and human evolution in Africa: introduction to the African paleoclimate special volume. Journal of human evolution 53, 5, 443-464.
  87. Masson-Delmotte, V. et al. (2006). Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints. Clim. Dyn. 26, 513.
  88. McClymont, E., Dekens, P., Dowsett, H., Dupont, L., Haywood, A., Rosell-Melé, A. and Salzmann, U. (2015). Pliocene climate variability over glacial-interglacial timescales -(PlioVAR) working group. Past Global Changes Magazine 23, 2, p. 82.
  89. McKinney, M. L. (1997). Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu. Rev. Ecol. Syst. 28, 495-516.
  90. Montanez, I. P. et al. (2016). Climate, pCO 2 and terrestrial carbon cycle linkages during late Palaeozoic glacial-interglacial cycles. Nature Geoscience 9, 824.
  91. Moritz, C. et al. (2009). Identification and dynamics of a cryptic suture zone in tropical rainforest. Proc Biol Sci. 276, 1660, 1235-1244.
  92. Mudelsee, M., & Raymo, M.E. (2005). Slow dynamics of the Northern Hemisphere glaciation, Paleoceanography and Paleoclimatology 20, PA4022.
  93. Myers, C. E., Stigall, A. L. & Lieberman, B. S. (2015). PaleoENM: applying ecological niche modeling to the fossil record. Paleobiology 41, 226-244.
  94. Nogués-Bravo, D., Rodríguez, J., Hortal, J., Batra, P. and Araújo, M. B. (2008). Climate Change, Humans, and the Extinction of the Woolly Mammoth. PLoS Biol. 6, e79.
  95. North Greenland Ice Core Project Members. (2004). High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147-151.
  96. O'Loughlin, J., A.M. Linke, and F.D.W. Witmer. (2014). Effects of temperature and precipitation variability on the risk of violence in sub-Saharan Africa, 1980-2012. Proceedings of the National Academy of Sciences 111, 47, 16712-16717.
  97. Otto-Bliesner, B.L. et al. (2014). Coherent changes of southeastern equatorial and northern African rainfall during the last deglaciation. Science 346, 1223-1227.
  98. Otto-Bliesner, B.L. et al. (2006). Simulating Arctic climate warmth and icefield retreat in the Last Interglaction. Science 311, 5768, 1751-1753.
  99. Palmer, C. (1990). Hybrids -a critical force in the application of information technology in the nineties. Journal of Information Technology 5, 232-235.
  100. Panitz, S., Salzmann, U., Risebrobakken, B., De Schepper, S., Pound, M. J, Haywood, A.M., Lunt, D.J. and Dolan A.M. (2018). Orbital, tectonic and oceanographic control of Pliocene climate and atmospheric circulation in Arctic Norway. Global and Planetary Change 161, 183-193.
  101. Parmesan, C. and Yohe, G. A. (2003). Globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37-42.
  102. Parrish, J.T. and Curtis, R.L. (1982). Atmospheric circulation, upwelling, and organic rich rocks in the Mesozoic and Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 40, 31-66.
  103. Pearson, P. N., Ditchfield, P. W., Singano, J., Harcourt-Brown, K. G., Nicholas, C. J., Olsson, R. K., Shackleton, N. J., and Hall, M. A. (2001). Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature 413, 481.
  104. Peng, Y., Shen, C., Cheng, H., and Xu, Y. (2014). Modelling of severe persistent droughts over eastern China during the last millennium. Clim. Past 10, 1079-1091.
  105. Peterson, A. T., Andrew T. (2011). Ecological Niches and Geographic Distributions (MPB-49).
  106. Potts, R. and T. Faith. (2015). Alternating high and low climate variability: the context of natural selection and speciation in Plio-Pleistocene hominin evolution. Journal of Human Evolution 87, 5-20.
  107. Pound, M. J., Haywood, A.M., Salzmann, U., Riding J.B. (2012). Global vegetation dynamics and latitudinal temperature gradients during the mid to late Miocene (15.97-5.33 Ma). Earth-Science Reviews 112, 1-2, 1-22.
  108. Pound, M. J., Haywood, A.M., Salzmann, U., Riding J.B., Lunt D.J. and Hunter S. (2011). A Tortonian (Late Miocene, 11.61-7.25 Ma) global vegetation reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 300, 1-4, 29-45.
  109. Prescott, G.W., et al. (2012). Quantitative global analysis of the role of climate and people in explaining late Quaternary megafaunal extinctions. Proceedings of the National Academy of Sciences 109, 12, 4527-4531.
  110. Prinn, R.G. (2013). Development and application of Earth System Models. Proceedings of the National Academy of Sciences 110, 1, 3673-3680.
  111. Ramstein, G., Fluteau, F., Besse, J. and Joussaume, S. (1997). Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature 386, 788-795.
  112. Ritz, C. et al. (2015). Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature 528, 7580, 115-118.
  113. Rohling, E.J. et al. (2012). Making sense of palaeoclimate sensitivity. Nature 491, 683-691.
  114. Royer, D. et al. (2004). CO 2 as a primary driver of Phanerozoic climate. GSA Today 14, 3-7.
  115. Salzmann, U., Haywood, A.M., Lunt, D.J., Valdes, P.J., Hill, D.J. (2008). A new global biome reconstruction and data-model comparison for the middle Pliocene. Glob. Ecol. Biogeogr. 17, 432- 447.
  116. Sarmiento, J. L. et al. (2004). Response of ocean ecosystems to climate warming. Global Biogeochem. Cycles 18, GB3003.
  117. Saupe, E. E. et al. (2015). Niche breadth and geographic range size as determinants of species survival on geological time scales. Glob. Ecol. Biogeogr. 24, 1159-1169.
  118. Saupe, E. E. et al. (2014). Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years. Proc. R. Soc. B Biol. Sci. 281, 20141995-20141995.
  119. Scotese, C. R. and Summerhayes, C. P. (1986). Computer model of palaeoclimate predicts coastal upwelling in the Mesozoic and Cenozoic. Geobyte 1, 3, 28-44.
  120. Sepulchre, P., Schuster, M., Ramstein, G., Krinnezr, G., Girard, J.-F., Vignaud, P. & Brunet, M. (2008). Evolution of Lake Chad Basin hydrology during the mid-Holocene: a preliminary approach from lake to climate modelling. Global and Planetary Change 61, 41-4.
  121. Sexton P.F., Wilson, P.A. and Pearson P.N. (2006). Microstructural and geochemical perspectives on planktic foraminiferal preservation: "Glassy" versus "Frosty". Geochemistry, Geophysics, Geosystems 7, Q12P19.
  122. Solomon, S. et al. (2007). (eds). Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  123. Stigall, A. L. (2014). When and how do species achieve niche stability over long time scales? Ecography (Cop.). 37, 1123-1132.
  124. Sutter, J., Gierz, P., Grosfeld, K., Thoma, M., Lohmann, G. (2016). Ocean temperature thresholds for Last Interglacial West Antarctic Ice Sheet collapse. Geophysical Research Letters 43, 2675-2682.
  125. Svenning, J.-C., Eiserhardt, W. L., Normand, S., Ordonez, A. and Sandel, B. (2015). The Influence of Paleoclimate on Present-Day Patterns in Biodiversity and Ecosystems. Annu. Rev. Ecol. Evol. Syst. 46, 551-572.
  126. Svenning, J.-C., Fløjgaard, C., Marske, K. A., Nógues-Bravo, D. and Normand, S. (2011). Applications of species distribution modeling to paleobiology. Quat. Sci. Rev. 30, 2930-2947.
  127. Tabor, C.R., C.J. Poulsen, D.J. Lunt, N.A. Rosenbloom, B.L. Otto-Bliesner, P.J. Markwick, E.C. Brady, A. Farnsworth, and R. Feng (2016). The cause of late Cretaceous cooling: a multi-model/proxy comparison. Geology 44, 963-966.
  128. Tallavaara, M., et al. (2015). Human population dynamics in Europe over the Last Glacial Maximum. Proceedings of the National Academy of Sciences 112, 27, 8232-8237.
  129. Tarasov, P. E. et al. (2000). Last glacial maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia. Journal of Biogeography 27, 609-620.
  130. Taylor et al. (2016). Enhanced weathering strategies for stabilizing climate and averting ocean acidification. Nature Clim. Change 6, 4, 402-406.
  131. Thomas, C. D. et al. (2004). Extinction risk from climate change. Nature 427, 145-148.
  132. Tierney, J. E., Pausata, F. S. R., and deMenocal, P. B. (2017). Rainfall regimes of the Green Sahara. Science Advances 3, 1.
  133. Timmermann, A. and T. Friedrich. (2016). Late Pleistocene climate drivers of early human migration. Nature 538, 7623, 92-95.
  134. Tjallingii, R., Claussen, M., Stuut, J.-B. W., Fohlmeister, J., Jahn, A., Bickert, T., Lamy, F., and Röhl, U.
  135. Coherent high and low-latitude control of the northwest African hydrological balance. Nature Geoscience 1, 670.
  136. Troll, C. (1948). Der asymmetrische Aufbau der Vegetationszonen und Vegetationsstufen auf der Nord-und Südhalbkugel. Ber. Geobot. Inst. Rübel, Zürich, 46-83.
  137. Urban, M. C. (2015). Climate change. Accelerating extinction risk from climate change. Science 348, 571-3.
  138. Van Andel, T.H. and W. Davies eds. (2003). Neanderthals and Modern Humans in the European Landscape of the Last Glaciation: Archaeological results of the stage 3 project. McDonald Institute for Archaeological Research Monographs, Cambridge.
  139. Varela, S., Lobo, J. M., Rodríguez, J. and Batra, P. (2010). Were the Late Pleistocene climatic changes responsible for the disappearance of the European spotted hyena populations? Hindcasting a species geographic distribution across time. Quat. Sci. Rev. 29, 2027-2035.
  140. Veloz, S. D. et al. (2012). No-analog climates and shifting realized niches during the late quaternary: implications for 21st-century predictions by species distribution models. Glob. Chang. Biol. 18, 1698- 1713.
  141. Von der Heydt, A.S. et al. (2016). Lessons on Climate Sensitivity from Past Climate Changes. Current Climate Change Reports 2, 4, 148-158.
  142. Vrba, E. (1995). On the connections between paleoclimate and evolution. In Paleoclimate and evolution; with emphasis on human origins, G.H.D. E. S. Vrba, T.C. Partridge, L.H. Burckle (eds). Yale University Press, New Haven. 24-48.
  143. Williams, J. W. and Jackson, S. T. (2007). Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475-482.
  144. Williams, J. W., Jackson, S. T. and Kutzbach, J. E. (2007). Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. U. S. A. 104, 5738-42.
  145. Yau, A.M. et al. (2016). Reconstructing the last interglacial at Summit, Greenland: Insights from GISP2. Proceedings of the National Academy of Sciences 113, 35, 9710-9715.
  146. Zachos, J.C., Dickens, G.R. and Zeebe, R.E. (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279-283.