Academia.eduAcademia.edu

Outline

Musical Combinatorics, Tonnetz, and the CubeHarmonic

2018, Journal of Collected papers of Academy of Arts

https://doi.org/10.5937/ZBAKUM1801104M

Abstract

In this paper, we give an overview of some applications of combinatorics and permutations in music through the centuries. The concepts of permutation and tonnetz (spatial representation of voice leading and modulation) can be joined together in a physical device, the CubeHarmonic, a musical version of the Rubik’s cube. We finally describe a prototype of the CubeHarmonic that uses the magnetic tracking technology developed at the Tohoku University.

References (40)

  1. Alegant, Brian. 2001. Cross-Partitions as Harmony and Voice Leading in Twelve-Tone Music. Music Theory Spectrum, 23 (1), pp. 1-40.
  2. Alegant, Brian, and Mead, Andrew. 2012. Having the Last Word: Schoenberg and the Ultimate Cadenza. Music Theory Spectrum, 34 (2), pp. 107-136.
  3. Bacon, Ernst. 1917. Our Musical Idiom. Reprinted from The Monist of October, 1917. The Open Court Publishing Company.
  4. Baroin, Gilles (et al.). Original Musical Spaces based on Graph Theory. Retrieved from http:// planetes.info, and http://www.mathemusic4d.net.
  5. Berstel, Jean, and Karhumäki, Juhani. 2003. Combinatorics on Words -A Tutorial. Bulletin- European Association for Theoretical Computer Sciences EATCS, 79, p. 178-228.
  6. Christensen, Thomas (eds.). 2006. The Cambridge History of Western Music Theory. Cambridge University Press.
  7. Euler, Leonhard. 1739. Tentamen novae theoriae musicae ex certissismis harmoniae principiis dilucide expositae. Saint Petersburg Academy, p. 147.
  8. Frey, Alexander Jr., and Singmaster, David. 1982. Handbook of the Cubik Math, Onslow Publishers.
  9. Fripertinger, Harald. 1992. Enumeration in Musical Theory. Beiträge zur Elektronischen Musik 1, 1992
  10. Goldin-Meadow, Susan, Mylander, Carolyn, and Butcher, Cynthia. 1995. The resilience of combinatorial structure at the word level: morphology in self-styled gesture system. Cognition 56, pp. 195-262.
  11. Hashi, Shuichiro, Toyoda, Masaru, Yabukami, Shin, Ishiyama, Kazushi, Okazaki, Yasuo, and Arai, Ken Ichi. 2006. Wireless Magnetic Motion Capture System for Multi-Marker Detection. IEEE Transactions on Magnetics. 42 (10).
  12. Hazewinkel, Michiel, ed. 2001. Combinatorial Analysis, from Encyclopedia of Mathematics, Springer.
  13. Hofacker, Ivo, Schuster, Peter, and Stadler, Peter. 1994. Combinatorics of RNA secondary structures. Discrete Applied Mathematics, 88 (1-3), pp. 207-237.
  14. Hook, Julian. 2006. Exploring Musical Space. Science, 313 (5783), pp. 49-50.
  15. Hook, Julian. 2007. Why Are There Twenty-Nine Tetrachords? A Tutorial on Combinatorics and Enumeration in Music Theory. Music Theory Online.
  16. Huang, Jiawei, Mori, Tsuyoshi, Takashima, Kazuki, Hashi, Shuichiro, and Kitamura, Yoshifumi. 2015. IM6D: Magnetic Tracking System with 6-DOF Passive Markers for Dexterous 3D Interaction and Motion. ACM Trans. Graph. 34 (6), Article 217.
  17. Huang, Jiawei, Mori, Tsuyoshi, Takashima, Kazuki, Hashi, Shuichiro, and Kitamura, Yoshifumi. 2016. 6-DOF Computation and Marker Design for Magnetic 3D Dexterous Motion- Tracking System. In: Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology. ACM, 2016. p. 211-217.
  18. Janata, Petr, Birk, Jeffrey, Van Horn, John, Leman, Marc, Tillmann, Barbara, and Bharucha, Jamshed. 2002. The Cortical Topography of Tonal Structures Underlying Western Music. Science, 13, 298 (5601), pp. 2167-2170.
  19. Jedrzejewski, Franck. 2006. Mathematical Theory of Music. Editions Delatour France.
  20. Johnson, Tom, and Jedrzejewski, Franck. 2014. Looking at Numbers. Springer.
  21. Kircher, Athanasius. 1650. Musurgia Universalis.
  22. Klumpenhouer, Henry. 1991. Aspects of Row Structure and Harmony in Martino's Impromptu Number 6. Perspectives of New Music, 29 (2), pp. 318-354.
  23. Lewin, David. 1987. Generalized Musical Intervals and Transformations. Oxford University Press (Reprint 2011).
  24. Loquin, Anatole. 1873. Tableau de tous les effets harmoniques de un à cinq.
  25. Mannone, Maria. 2017. Musical Gestures between Scores and Acoustics: A Creative Application to Orchestra. Ph.D. dissertation, University of Minnesota, USA.
  26. Mazzola, Guerino, Mannone, Maria, and Pang, Yan. 2016. Cool Math for Hot Music. Springer
  27. Nierhaus, Gerhard. 2009. Algorithmic Composition: Paradigms of Automated Music Generation. Springer.
  28. Nolan, Catherine. 2000. On Musical Space and Combinatorics: Historical and Conceptual Perspectives in Music Theory. Bridges.
  29. Perloff, Marjorie, and Junkerman, Charles. 1994. John Cage: Composed in America. University of Chicago Press.
  30. Polfreman, Richard, and Oliver, Benjamin. 2017. Rubik's Cube, Music's Cube. Proceedings of NIME Conference.
  31. Ratner, Leonard. 1970. Ars combinatoria: Chance and Choice in Eighteenth-Century Music. In Studies in Eighteenth-Century Music, ed. H. C. Robbins Landon and Roger E. Chapman. Oxford University Press, pp. 343-63.
  32. Redfield, J. Howard. 1927. The Theory of Group-Reduced Distributions. American Journal of Mathematics, 49 (3), pp. 433-455.
  33. Riepel, Joseph. 1755. Grundregeln zur Tonordnung Insgemein. Nabu Press (Reprint 2011).
  34. Riemann, Hugo [1914-15]. 1992. Ideas for a Study 'On the Imagination of Tone.' Translated by Robert Wason and Elizabeth West Marvin. Journal of Music Theory 36 (1), pp. 81-117.
  35. Rotman, Joseph. 1991. An Introduction to the Theory of Groups. Springer.
  36. Tymoczko, Dmitri. 2012. The Generalized Tonnetz. Journal of Music Theory, 56 (1).
  37. Queneau, Raymond. 1961. Cent mille milliards de poèmes. Gallimard.
  38. Weed, Jared. 2016. Sub-Optimal Multi-Phase Path Planning: A Method for Solving Rubik's Revenge. ArXiv.
  39. Zbikowski, Lawrence. 2002. Conceptualizing Music: Cognitive Structure, Theory, and Analysis. Oxford University Press, pp. 142-143.
  40. Zweig, Janet. 2014. Ars Combinatoria. Art Journal, 56 (3), pp. 20-29. Muzička kombinatorika, Tonnetz, i CubeHarmonic Apstrakt: U radu je dat pregled nekih primena kombinatorike i permutacije u muzici kroz vekove. Koncepti permutacije i Tonnetza (prostornog prikaza vođenja glasova i modulacije) mogu biti spojeni u jednu fizičku napravu -CubeHarmonic (harmonsku kocku), muzičku verziju Rubikove kocke. Konačno, opisujemo prototip CubeHarmonic u kome je korišćena tehnologija magnetskog praćenja, razvijena na Tohoku univerzitetu. Kljlučne reči: grupna terapija, Rubikova kocka, praćenje pokreta