Academia.eduAcademia.edu

Outline

Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review

https://doi.org/10.1111/1541-4337.12196

Abstract

The drying of fruits and vegetables is a complex operation that demands much energy and time. In practice, the drying of fruits and vegetables increases product shelf-life and reduces the bulk and weight of the product, thus simplifying transport. Occasionally, drying may lead to a great decrease in the volume of the product, leading to a decrease in storage space requirements. Studies have shown that dependence purely on experimental drying practices, without mathematical considerations of the drying kinetics, can significantly affect the efficiency of dryers, increase the cost of production, and reduce the quality of the dried product. Thus, the use of mathematical models in estimating the drying kinetics, the behavior, and the energy needed in the drying of agricultural and food products becomes indispensable. This paper presents a comprehensive review of modeling thin-layer drying of fruits and vegetables with particular focus on thin-layer theories, models, and applications since the year 2005. The thin-layer drying behavior of fruits and vegetables is also highlighted. The most frequently used of the newly developed mathematical models for thin-layer drying of fruits and vegetables in the last 10 years are shown. Subsequently, the equations and various conditions used in the estimation of the effective moisture diffusivity, shrinkage effects, and minimum energy requirement are displayed. The authors hope that this review will be of use for future research in terms of modeling, analysis, design, and the optimization of the drying process of fruits and vegetables.

References (123)

  1. Aghbashlo M, Kianmehr MH, Khani S, Ghasemi M. 2009. Mathematical modeling of thin-layer drying of carrot. Intl Agrophys 23:313-7.
  2. Aghbashlo M, Kianmehr MH, Samimi-Akhijahani H. 2008. Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae). Ener Conver Manage 49(10):2865-71. doi:10.1016/j.enconman.2008.03.009
  3. Akhondi E, Kazemi A, Maghsoodi V. 2011. Determination of a suitable thin-layer drying curve model for saffron (Crocus sativus L) stigmas in an infrared dryer. Scientia Iranica 18(6):1397-401. doi:10.1016/j.scient.2011.08.014
  4. Akoy EO. 2014. Experimental characterization and modeling of thin-layer drying of mango slices. Intl Food Res J 21(5):1911-7.
  5. Akpinar EK. 2006a. Determination of suitable thin-layer drying curve model for some vegetables and fruits. J Food Engr 73:75-84. doi:10.1016/j.jfoodeng.2005.01.007
  6. Akpinar EK. 2006b. Mathematical modeling of thin-layer drying process under open sun of some aromatic plants. J Food Engr 77:864-70. doi:10.1016/j.jfoodeng.2005.08.014
  7. Akpinar EK, Bicer Y, Yildiz C. 2003. Thin-layer drying of red pepper. J Food Engr 59(1):99-104. doi:10.1016/S0260-8774(02)00425-9.
  8. Akpinar EK, Bicer Y. 2005. Modeling of the drying of eggplants in thin-layers. Intl J Food Sci Technol 40:273-81.
  9. Alves-Filho O, Strommen I, Thorbergsen E. 1997. A simulation model for heat pump dryer plants for fruits and roots. Drying Technol 15(5): 1369-98 ANSI/ASAE. 2014. Thin-layer drying of agricultural crops. In: revised approved ASABE standards. American Society of Agricultural and Biological Engineers (S448.2). Available from: https://elibrary.asabe.org/ azdez.asp?JID=2&AID=45096&CID=s2000&T=2&redir= none&redirType=standards.asp. Accessed 2015 July 13.
  10. Araya-Farias M, Ratti C. 2009. Dehydration of foods: general concepts. In: Ratti C, editor. Advances in food dehydration. Boca Raton, FL: CRC Press. p 1-36. doi:10.1201/9781420052534.ch1.
  11. Arévalo-Pinedo A, Murr FEX. 2006. Kinetics of vacuum-drying of pumpkin (Cucurbita maxima): modeling with shrinkage. J Food Engr 76(4):562-7. doi:10.1016/j.jfoodeng.2005.06.003
  12. Ayadi M, Ben Mabrouk S, Zouari I, Bellagi A. 2014. Kinetic study of the convective drying of spearmint. J Saudi Soc Agric Sci 13(1):1-7. doi:10.1016/j.jssas.2013.04.004
  13. Babalis SJ, Papanicolaou E, Kyriakis N, Belessiotis VG. 2006. Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficus carica). J Food Engr 75:205-14. doi:10.1016/j.jfoodeng.2005.04.008
  14. Botelho FM, Corrêa PC, Goneli ALD, Martins MA, Magalhães FEA, Campos SC. 2011. Periods of constant and falling-rate for infrared drying of carrot slices. Revista Brasileira de Engenharia Agrícola e Ambiental 15(8):845-52.
  15. Brooker DB, Bakker-Arkema FW, Hall CW. 1992. Drying and storage of grains and oilseeds. Westport, Conn., U.S.A.: AVI Publishing Co.
  16. Brooker DB, Bakker-Arkema FW, Hall CW. 1974. Drying cereal grains. Westport, Conn., U.S.A.: AVI Publishing Co.
  17. Bruce DM, 1985. Exposed layer barley drying, three models fitted to new data up to 150 °C. J Agric Engr Res 32:337-47.
  18. Carrin ME, Crapiste GH. 2008. Convective drying of foods. In: Ratti C, editor. Advances in food dehydration. Boca Raton, FL: CRC Press. p 123-152.
  19. Chau KJ, Mujumdar AS, Hawlader MNA, Chou SK, Ho JC. 1997. Convective drying of agricultural products: effect of continuous and stepwise change in drying air temperature. Drying Technol 19(8):1949-60. doi:10.1081/DRT-100107282
  20. Chen J, Zhou Y, Fang S, Meng Y, Kang X, Xu X, Zuo X. 2013. Mathematical modeling of hot air drying kinetics of momordica charantia slices and its color change. Adv J Food Sci Technol 5(9):1214-9.
  21. Cihan A, Ece MC. 2001. Liquid diffusion model for intermittent drying of rough rice. J Food Engr 49:327-31.
  22. Corzo O, Bracho N, Alvarez C. 2011. Determination of suitable thin-layer model for air drying of mango slices (Mangifera indica L.) at different air temperatures and velocities. J Food Process Engr 34(2):332-50. doi:10.1111/j.1745-4530.2009.00360.
  23. Crank J. 1979. The mathematics of diffusion. Revised edition. Oxford, Great Britain: Clarendon Press.
  24. Dadali G, Demirhan E, Özbek B. 2007. Color change kinetics of spinach undergoing microwave drying. Drying Technol 25(10):1713-23. doi:10.1080/07373930701590988
  25. Darıcı S, S ¸en S. 2015. Experimental investigation of convective drying kinetics of kiwi under different conditions. Heat Mass Transfer 51(8):1167-76. doi:10.1007/s00231-014-1487-x
  26. Darvishi H, Asl AR, Asghari A, Azadbakht M, Najafi G, Khodaei J. 2014. Study of the drying kinetics of pepper. J Saudi Soc Agric Sci 13(2):130-8. doi:10.1016/j.jssas.2013.03.002
  27. Darvishi H, Hazbavi E. 2012. Mathematical modeling of thin-layer drying behavior of date palm. Glob J Sci Front Res Math Dec Sci 12(10):9-17.
  28. Darvishi H, Khoshtaghaza MH, Minaei S. 2014. Drying kinetics and colour change of lemon slices. Intl Agrophys 28(1):1-6. doi:10.2478/intag-2013-0021
  29. Dash KK, Gope S, Sethi A, Doloi M. 2013. Star fruit slices. Intl J Agric Food Sci Technol 4(7):679-86.
  30. Da Silva WP, Silva CMDPS, De Sousa JAR, Farias VSO. 2013. Empirical and diffusion models to describe water transport into chickpea (Cicer arietinum L.). Intl J Food Sci Technol 48(2):267-73. doi:10.1111/j.1365-2621.2012.03183.x
  31. Da Silva WP, Rodrigues AF, Silva CMDPS, De Castro DS, Gomes JP. 2015. Comparison between continuous and intermittent drying of whole bananas using empirical and diffusion models to describe the processes. J Food Engr 166:230-6. doi:10.1016/j.jfoodeng.2015.06.018
  32. Demir V Ã, Gunhan T, Yagcioglu AK. 2007. Mathematical modeling of convection drying of green table olives. Biosyst Engr 98:47-53. doi:10.1016/j.biosystemseng.2007.06.011
  33. Diamante L, Durand M, Savage G, Vanhanen L. 2010a. Effect of temperature on the drying characteristics, colour and ascorbic acid content of green and gold kiwifruits. Intl Food Res J 451:441-51.
  34. Diamante LM, Ihns R, Savage GP, Vanhanen L. 2010b. Short communication: a new mathematical model for thin-layer drying of fruits. Intl J Food Sci Technol 45(9):1956-62. doi:10.1111/j.1365-2621.2010. 02345.x
  35. Dianda B, Ousmane M, Kam S, Ky T, Bathiébo DJ. 2015. Experimental study of the kinetics and shrinkage of tomato slices in convective drying. Afr J Food Sci 9(5):262-71. doi:10.5897/AJFS2015.1298
  36. Thin-layer models of fruits and vegetables . . .
  37. Doymaz I. 2005. Drying behaviour of green beans. J Food Engr 69:161-5. doi:10.1016/j.jfoodeng.2004.08.009
  38. Doymaz I. 2007. The kinetics of forced convective air-drying of pumpkin slices. J Food Engr 79:243-8. doi:10.1016/j.jfoodeng.2006.01.049
  39. Doymaz I. 2012. Evaluation of some thin-layer drying models of persimmon slices (Diospyros kaki L .). Ener Conver Manage 56:199-205. doi:10.1016/j.enconman.2011.11.027
  40. Doymaz İ. 2010. Evaluation of mathematical models for prediction of thin-layer drying of banana slices. Intl J Food Prop 13(3):486-97. doi:10.1080/10942910802650424
  41. Duc LA, Woong HJ, Hyuk KD. 2011. Thin-layer drying characteristics of rapeseed. J Stored Products Res 47:32-8.
  42. Ekechukwu OV. 1999. Review of solar-energy drying systems I: an overview of drying principles and theory. Ener Conver Manage 40(6):593-613.
  43. El-Beltagy A, Gamea GR, Essa AHA. 2007. Solar drying characteristics of strawberry. J Food Engr 78:456-64. doi:10.1016/j.jfoodeng.2005.10.015
  44. El-mesery HS, Mwithiga G. 2012. The drying of onion slices in two types of hot-air convective dryers. Afr J Agric Res 7(30):4284-96. doi:10.5897/AJAR11.2065
  45. Erbay Z, Icier F. 2010. A review of thin-layer drying of foods: theory, modeling, and experimental results. Crit Rev Food Sci Nutr 50(5):441-64. doi:10.1080/10408390802437063
  46. Fadhel MI, Abdo RA, Yousif BF, Zaharim A, Sopian K. 2011. Thin-layer drying characteristics of banana slices in a force convection indirect solar drying. In: 6th IASME/WSEAS International Conference on Energy and Environment: Recent Researches in Energy and Environment, Cambridge, United Kingdom, 23-25 Feb 2011, P 310-15.
  47. Gan PL, Poh PE. 2014. Investigation on the effect of shapes on the drying kinetics and sensory evaluation study of dried jackfruit. Intl J Sci Engr 7:193-8.
  48. Garcia CC, Mauro MA, Kimura M. 2007. Kinetics of osmotic dehydration and air-drying of pumpkins (Cucurbita moschata). J Food Engr 82(3):284-91. doi:10.1016/j.jfoodeng.2007.02.004
  49. Giri SK, Prasad S. 2007. Drying kinetics and rehydration characteristics of microwave vacuum and convective-hot air-dried mushrooms. J Food Engr 78:512-21.
  50. Guan Z, Wang X, Li M, Jiang X. 2013. Mathematical modeling on hot air drying of thin-layer fresh tilapia fillets. Polish J Food Nutr Sci 63(1):25-34. doi:10.2478/v10222.
  51. Guiné RPF, Pinho S, Barroca MJ. 2011. Study of the convective drying of pumpkin (Cucurbita maxima). Food Bioprod Process 89(4):422-8. doi:10.1016/j.fbp.2010.09.001
  52. Gupta K, Alam S. 2014. Modeling of thin-layer drying kinetics of grape juice concentrate and quality assessment of developed grape leather. Agric Engr Intl: CIGR J 16(2):196-207.
  53. Hashim N, Onwude D, Rahaman E. 2014. A preliminary study: kinetic model of drying process of pumpkins (Cucurbita moschata) in a convective hot air dryer. Agric Agric Sci Procedia 2(2):345-52. doi:10.1016/j.aaspro.2014.11.048
  54. Henderson SM. 1974. Progress in developing the thin-layer drying equation. Transact ASAE 17:1167-72.
  55. Henderson SM, Pabis S. 1961. Grain drying theory I: temperature effect on drying coefficient. J Agric Engr Res 6:169-74.
  56. Hii CLIK, Ogugo JF. 2014. Effect of pre-treatment on the drying kinetics and product quality of star fruit slices. J Engr Sci Technol 9(1):123-35.
  57. Hii CL, Law CL, Cloke M. 2009. Modeling using a new thin-layer drying model and product quality of cocoa. J Food Engr 90(2):191-8. doi:10.1016/j.jfoodeng.2008.06.022
  58. Hossain MA, Woods JL, Bala BK. 2007. Single-layer drying characteristics and colour kinetics of red chilli. Intl J Food Sci Technol 42(11):1367-75. doi:10.1111/j.1365-2621.2006.01414.x
  59. Jangam SV, Mujumdar AS. 2010. Basic concepts and definition. In: Jangam SV, Law CL, Mujumdar AS, editors. Drying of foods, vegetables and fruits, Vol. 1. Singapore NUS. p 1-30. ISBN: 978-981-08-7985-3.
  60. Janjai S, Lamlert N, Mahayothee B, Bala BK, Precoppe M, Muller J. 2011. Thin-layer drying of peeled longan. Food Sci Technol 17(4):279-88. doi:10.3136/fstr.17.279
  61. Jazini MH, Hatamipour MS. 2010. A new physical pretreatment of plum for drying. Food Bioprod Process 88(2-3):133-7. doi:10.1016/j.fbp.2009.06.002
  62. Kadam DM, Goyal RK, Gupta MK. 2011. Mathematical modeling of convective thin-layer drying of basil leaves. J Med Plants Res 5(19):4721-30.
  63. Kaleta A, Górnicki K. 2010. Evaluation of drying models of apple (var. McIntosh) dried in a convective dryer. Intl J Food Sci Technol 45(5):891-8. doi:10.1111/j.1365-2621.2010.02230.x
  64. Kaur K, Singh AK. 2014. Drying kinetics and quality characteristics of beetroot slices under hot air followed by microwave finish drying. Afr J Agric Res 9(12):1036-44. doi:10.5897/AJAR2013.
  65. Keey R.B. 1972. Drying principles and practice. Oxford: Pergamon Press. p 1-18.
  66. Kiranoudis CT, Tsami E, Maroulis ZB, Marinos-Kouris D. 1997. Drying kinetics of some fruits. Drying Technol 15(5):1399-418.
  67. Klemes J, Smith R, Kim JK. 2008. Handbook of water and energy management in food processing. Boca Raton: Woodhead Publishing and CRC Press. p 449-629.
  68. Krokida MK, Karathanos VT, Maroulis ZB, Marinos-Kouris D. 2003. Drying kinetics of some vegetables. J Food Engr 59(4):391-403. doi:10.1016/S0260-8774(02)00498-3
  69. Kucuk H, Midilli A, Kilic A, Dincer I. 2014. A review on thin-layer drying-curve equations. Drying Technol 32(7):757-73. doi:10.1080/07373937.2013.873047
  70. Kudra T, Mujumdar AS. 2002. Part I. General discussion: conventional and novel drying concepts. In: Kudra T, Mujumdar AS, editors. Advanced drying technologies. New York: Marcel Dekker Inc. p 1-26.
  71. Kumar PDG, Hebber UH, Ramesh MN. 2006. Suitability of thin layer models for infrared-hot-air drying of onion slices. LWT-Food Science and Technology 39(6):700-5.
  72. Kumar C, Karim A, Joardder MUH, Miller GJ. 2012a. Modeling heat and mass transfer process during convection drying of fruit. The 4th International Conference on Computational Methods (ICCM2012), Gold Coast, Australia, p 25-27, November 2012.
  73. Kumar N, Sarkar BC, Sharma HK. 2012b. Mathematical modeling of thin-layer hot air drying of carrot pomace. J Food Sci Technol 49(1):33-41. doi:10.1007/s13197-011-0266-7
  74. Luikov AV. 1975. Systems of differential equations of heat and mass transfer in capillary-porous bodies. Intl J Heat Mass Transfer 18:1-14.
  75. Mabrouk SB, Benali E, Oueslati H. 2012. Experimental study and numerical modelling of drying characteristics of apple slices. Food Bioprod Process 90(4):719-28. doi:10.1016/j.fbp.2012.02.001
  76. Meisami-asl E, Rafiee S. 2009. Mathematical modeling of kinetics of thin layer drying of Apples (Golab). Agric Engr Intl: CIGR J 6:1-10.
  77. Meisami-asl E, Rafiee S, Keyhani A, Tabatabaeefar A. 2010. Determination of suitable thin-layer drying curve model for apple slices (Golab). Plant OMICS 3(3):103-8.
  78. Menges HO, Ertekin C. 2006. Mathematical modeling of thin-layer drying of golden apples. J Food Engr 77(1):119-25. doi:10.1016/j.jfoodeng.2005.06.049
  79. Mercali GD, Tessaro IC, Noreña CPZ, Marczak LDF. 2010. Mass transfer kinetics during osmotic dehydration of bananas (Musa sapientum, shum.). Intl J Food Sci Technol 45(11):2281-9. doi:10.1111/j.1365-2621.2010. 02418.x
  80. Midilli A, Kucuk H, Yapar Z. 2002. A new model for single-layer drying. Drying Technol 20(7):1503-13. doi:10.1081/DRT-120005864
  81. Mihindukulasuriya SDF, Jayasuriya HPW. 2013. Mathematical modeling of drying characteristics of chilli in hot air oven and fluidized bed dryers. Agric Engr Intl: CIGR J 15(1):154-66.
  82. Misha S, Mat AS, Ruslan MH, Sopian K, Salleh E. 2013. The effect of drying air temperature and humidity on the drying kinetic of kenaf core. Appl Mech Mater 315:710-4. doi:10.4028/www.scientific.net/AMM.315.710
  83. Mohammadi A, Rafiee S, Keyhani A. 2008. Estimation of thin-layer drying characteristics of kiwifruit (Hayward) with use of Page's model. Am-Euras J Sustain Agric 3(5):802-5.
  84. Murthy TPK, Manohar B. 2012. Microwave-drying of mango ginger (Curcuma amada Roxb): prediction of drying kinetics by mathematical modeling and artificial neural network. Intl J Food Sci Technol 47(6):1229-36. doi:10.1111/j.1365-2621.2012.02963.x
  85. Olurin TO, Adelekan AO, Olosunde WA. 2012. Mathematical modeling of drying characteristics of blanched field pumpkin (Cucurbita pepo L) slices. Agric Engr Intl: CIGR J 14(4):246-54.
  86. Omolola AO, Jideani AIO, Kapila PF. 2014. Modeling microwave-drying kinetics and moisture diffusivity of Mabonde banana variety. Intl J Agric Biol Engr 7(6):107-13. doi:10.3965/j.ijabe.20140706.013
  87. Onwude DI, Hashim N, Janius R, Nawi N, Abdan K. 2015a. Computer simulation of convective hot air drying kinetics of pumpkin (Cucurbita Thin-layer models of fruits and vegetables . . . moschata). The 8th Asia-Pacific Drying Conference (ADC 2015) Kuala Lumpur, Malaysia, 10-12 August 2015, p 122-9.
  88. Onwude DI, Hashim N, Janius R, Nawi N, Abdan K. 2015b. Evaluation of a suitable thin-layer model for drying of pumpkin under forced air convection. Intl Food Res J, Accepted Manuscript. Ozdemir M, Devres YO. 2000. The thin-layer drying characteristics of hazelnuts during roasting. J Food Engr 42:225-33.
  89. Page GE. 1949. Factors ınfluencing the maximum rate of air drying shelled corn in thin-layers [MS thesis].
  90. Panchariya PC, Popovic D, Sharma AL. 2002. Thin-layer modeling of black tea drying process. J Food Engr 52:349-57.
  91. Pandey H, Sharma HK, Chauhan RC, Sarkar BC, Bera MB. 2010. Experiments in food process engineering. New Delhi: CBS Publisher and Distributors PVT. p 139-45.
  92. Pardeshi IL, Arora S, Borker PA. 2009. Thin-layer drying of green peas and selection of a suitable thin-layer drying model. Drying Technol 27(2):288-95. doi:10.1080/07373930802606451
  93. Pereira W, Silva CMDPS, Gama FJA. 2014. Mathematical models to describe thin-layer drying and to determine drying rate of whole bananas. J Saudi Soc Agric Sci 13(1):67-74. doi:10.1016/j.jssas.2013.01.003
  94. Perez NE, Schmalko ME. 2009. Convective drying of pumpkin: influence of pretreatment and drying temperature. J Food Process Engr 32(1):88-103. doi:10.1111/j.1745-4530.2007.00200.x
  95. Ponkham K, Meeso N, Soponronnarit S, Siriamornpun S. 2012. Modeling of combined far-infrared radiation and air drying of a ring shaped-pineapple with/without shrinkage. Food Bioprod Process 90(2):155-64. doi:10.1016/j.fbp.2011.02.008
  96. Rasouli M, Seiiedlou S, Ghasemzadeh HR, Nalbandi H. 2011. Convective drying of garlic (Allium sativum L.): part I: drying kinetics, mathematical modeling and change in color. Austr J Crop Scie 5(13):1707-14.
  97. Raquel PF, Susana P, Maria JB. 2011. Study of the convective drying of pumpkin (Cucurbita maxima). Food Bioprod Process 89:422-8.
  98. Rayaguru K, Routray W. 2012. Mathematical modeling of thin-layer drying kinetics of stone apple slices. Intl Food Res J 19(4):1503-10.
  99. Reyes A, Alvarez PI, Marquardt FH. 2007. Drying of carrots in a fluidized bed. I. Effects of drying conditions and modeling. Drying Technol 20(7):1463-83. doi:10.1081/DRT-120005862
  100. Ruiz-López II, García-Alvarado MA. 2007. Analytical solution for food-drying kinetics considering shrinkage and variable diffusivity. J Food Engr 79(1):208-16. doi:10.1016/j.jfoodeng.2006.01.051
  101. Rizvi SSH. 1995. Thermodynamic properties of foods in dehydration. In: Rao MA, Rizvi SSH, editors. Engineering properties of foods. New York: Marcel Dekker. p 223-309.
  102. Sacilik K. 2007. Effect of drying methods on thin-layer drying characteristics of hull-less seed pumpkin (Cucurbita pepo L.). J Food Engr 79(1):23-30. doi:10.1016/j.jfoodeng.2006.01.023
  103. Sacilik K, Keskin R, Elicin AK. 2006. Mathematical modeling of solar tunnel drying of thin-layer organic tomato. J Food Engr 73:231-8. doi:10.1016/j.jfoodeng.2005.01.025
  104. Sacilik K, Unal G. 2005. Dehydration characteristics of kastamonu garlic slices. Biosyst Engr 92(2):207-15. doi:10.1016/j.biosystemseng.2005.06. 006
  105. Saeed IE, Sopian K, Abidin ZZ. 2008. Drying characteristics of roselle (1): mathematical modeling and drying experiments. Agric Engr Intl: CIGR J X(1):1-25.
  106. Saxena J, Dash KK. 2015. Drying kinetics and moisture diffusivity study of ripe jackfruit. Intl Food Res J 22(1):414-20.
  107. Seremet (Ceclu) L, Botez E, Nistor OV, Andronoiu DG, Mocanu GD. 2015. Effect of different drying methods on moisture ratio and rehydration of pumpkin slices. Food Chem 195:104-9. doi:10.1016/j.foodchem.2015.03.125
  108. Shi J, Pan Z, McHugh TH, Wood D, Hirschberg E, Olson D. 2008. Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating. LWT-Food Sci Technol 41(10):1962-72. doi:10.1016/j.lwt.2008.01.003
  109. Simal S, Femenia A, Garau MC, Rosselló C. 2005. Use of exponential, Page's and diffusional models to simulate the drying kinetics of kiwi fruit. J Food Engr 66(3):323-8. doi:10.1016/j.jfoodeng.2004.03.025
  110. Sturm B, Hofacker WC, Hensel O. 2012. Optimizing the drying parameters for hot-air-dried apples. Drying Technol 30(14):1570-82. doi:10.1080/07373937.2012.698439
  111. Tahmasebi M, Hashjin TT, Khoshtaghaza MH, Nikbakht AM. 2011. Evaluation of thin-layer drying models for simulation of drying kinetics of quercus (Quercus persica and Quercus libani). J Agric Sci Technol 13:155-63.
  112. Tzempelikos DA, Vouros AP, Bardakas AV, Filios AE, Margaris DP. 2014. Case studies on the effect of the air drying conditions on the convective drying of quinces. Case Stud Thermal Engr 3:79-85. doi:10.1016/j.csite.2014.05.001
  113. Tzempelikos DA, Vouros AP, Bardakas AV, Filios AE, Margaris DP. 2015. Experimental study on convective drying of quince slices and evaluation of thin-layer drying models. Engr Agric Environ Food 8(3):169-77. doi:10.1016/j.eaef.2014.12.002
  114. Unal HG, Sacilik K. 2011. Drying characteristics of hawthorn fruits in a convective hot-air dryer. J Food Process Preserv 35(2):272-9. doi:10.1111/j.1745-4549.2009.00451.x
  115. Vega A, Uribe E, Lemus R, Miranda M. 2007. Hot-air drying characteristics of aloe vera (Aloe barbadensis) and influence of temperature on kinetic parameters. LWT-Food Sci Technol 40:1698-707. doi:10.1016/j.lwt.2007.01.001
  116. Vega A, Fito P, Andrés A, Lemus R. 2007. Mathematical modeling of hot-air drying kinetics of red bell pepper (var. Lamuyo). J Food Engr 79: 1460-6.
  117. Verma LR, Bucklin RA, Ednan JB, Wratten FT. 1985. Effects of drying air parameters on rice drying models. Transact ASAE 28:296-301.
  118. Wang CY, Singh RP. 1978. A single layer drying equation for rough rice. ASAE Paper No: 78-3001: Am Soc Agric Biol Engr, St. Joseph, MI.
  119. Yaldýz O, Ertekýn C. 2007. Thin-layer solar drying of some vegetables. Drying Technol 19(3-4):583-97. doi:10.1081/DRT-100103936
  120. Yaldiz O, Ertekin C, Uzun HI. 2001. Mathematical modeling of thin-layer solar drying of sultana grapes. Energy 26(5):457-65.
  121. Yang H, Sakai N, Watanabe M. 2001. Drying model with non-isotropic shrinkage deformation undergoing simultaneous heat and mass transfer. Drying Technol 19:1441-60.
  122. Zarein M, Samadi S, Barat G. 2013. Kinetic drying and mathematical modeling of apple slices on dehydration process. J Food Process Technol 4(7):1-4. doi:10.4172/2157-7110.1000247
  123. Zenoozian MS, Feng H, Shahidi F, Pourreza HR. 2008. Image analysis and dynamic modeling of thin-layer drying of osmotically dehydrated pumpkin. J Food Process Preserv 32:88-102.