Academia.eduAcademia.edu

Outline

Lagocephalus_Sceleratus.pdf

https://doi.org/10.1007/978-3-319-23983-5_9

Abstract

Climate change combined with the increase of extreme weather phenomena, has significantly influenced marine ecosystems, resulting in water overheating, increase of sea level and rising of the acidity of surface waters. The potential impacts in the biodiversity of sensitive ecosystems (such as Mediterranean sea) are obvious. Many organisms are under extinction, whereas other dangerous invasive species are multiplied and thus they are destroying the ecological equilibrium. This research paper presents the development of a sophisticated, fast and accurate Food Pathogen Detection (FPD) system, which uses the biologically inspired Artificial Intelligence algorithm of Extreme Learning Machines. The aim is the automated identification and control of the extremely dangerous for human health invasive fish species "Lagocephalus Sceleratus". The matching is achieved through extensive comparisons of protein and DNA sequences, known also as DNA barcodes following an ensemble learning approach.

References (46)

  1. Frank, J.R., Olden, J.D.: Assessing the Effects of Climate Change on Aquatic Invasive Species. Conservation Biology 22(3), 521-533 (2008). doi:10.1111/j.1523-1739.2008.00950. x. Society for Conservation Biology
  2. Kheifets, J., Rozhavsky, B., Solomonovich, Z.G., Rodman, M., Soroksky, A.: Severe Te- trodotoxin Poisoning after Consumption of Lagocephalus sceleratus (Pufferfish, Fugu) Fished in Mediterranean Sea, Treated with Cholinesterase Inhibitor. Case Reports in Criti- cal Care 2012, Article ID 782507, 3 p. (2012). doi:10.1155/2012/782507
  3. Akova, F., Dundar, M., Davisson, V.J., Hirleman, D.E., Bhunia, A.K., Robinson, J.P., Rajwa, B.: A Machine-Learning Approach to Detecting Unknown Bacterial Serovars. Sta- tistical Analysis and Data Mining (2011). doi:10.1002/sam.10085
  4. Pan, W., Zhao, J., Chen, Q.: Classification of foodborne pathogens using near infrared la- ser scatter imaging system with multivariate calibration (2015). doi:10.1038/srep09524
  5. Rajwa, B., Dundar, M.M., Akova, F., Bettasso, A., Patsekin, V., Hirleman, E.D., Bhunia, A.K., Robinson, J.P.: Discovering the Unknown: Detection of Emerging Pathogens Using a Label-Free Light-Scattering System. Cytometry Part A 77A, 1103-1112 (2010)
  6. Rajwa, B., Venkatapathi, M., Ragheb, K., Banada, P.P., Hirleman, E.D., Lary, T., Robin- son, J.P.: Automated classification and recognition of bacterial particles in flow by multi- angle scatter measurement and a support-vector machine classifier. Cytometry A 73(4), 369-379 (2008). doi:10.1002/cyto.a.20515
  7. Pan, Y.: Protein structure prediction and understanding using machine learning methods. In: 2005 IEEE Granular Computing, vol. 1 (2005). doi:10.1109/GRC.2005.1547225
  8. Ma, X., Hu, L.: Extracting sequence features to predict DNA-binding proteins using sup- port vector machine. In: 2013 Fifth International Conference on Computational and Infor- mation Sciences (ICCIS) (2013). doi:10.1109/ICCIS.2013.48
  9. Yu, D.-J., Hu, J., Li, Q.M., Tang, Z.M., Yang, J.Y., Shen, H.B.: Constructing Query- Driven Dynamic Machine Learning Model With Application to Protein-Ligand Binding Sites Prediction. NanoBioscience, IEEE, 14(1) (2015)
  10. Leigh, D., Thredgold, E.A.V., Lenehan, C.E.: Direct detection of histamine in fish flesh using microchip electrophoresis with capacitively coupled contactless conductivity detec- tion. Anal. Methods, 1802-1808 (2015). doi:10.1039/C4AY02866J
  11. Lipman, D.J., Pearson, W.R.: Rapid and sensitive protein similarity searches. Science 227(4693), 1435-1441 (1985). doi:10.1126/science.2983426. PMID 2983426
  12. Moraglio, A., Di Chio, C., Poli, R.: Geometric Particle Swarm Optimization 2008, Article ID 143624, 14 p. (2008). doi:10.1155/2008/143624
  13. Rokach, Lior: Ensemble-based classifiers. Artificial Intelligence Review 33(1-2), 1-39 (2010). doi:10.1007/s10462-009-9124-7
  14. Cambria, E., Huang, G.-B.: Extreme Learning Machines. IEEE Intelligent Systems (2013)
  15. Huang, G.-B.: An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels (2014). doi:10.1007/s12559-014-9255-2, Springer 17. http://www.cabi.org/isc/
  16. Nitesh, V., Chawla, B.K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research 16 (2002)
  17. Anezakis, V.-D., Demertzis, K., Iliadis, L., 2018. Classifying with fuzzy chi-square test: The case of invasive species. AIP Conference Proceedings 1978, 290003. https://doi.org/10/gdtm5q
  18. Anezakis, V.-D., Demertzis, K., Iliadis, L., Spartalis, S., 2017a. Hybrid intelligent modeling of wild fires risk. Evolving Systems 1-17. https://doi.org/10/gdp863
  19. Anezakis, V.-D., Demertzis, K., Iliadis, L., Spartalis, S., 2016a. A Hybrid Soft Computing Approach Producing Robust Forest Fire Risk Indices, in: Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology. Presented at the IFIP International Conference on Artificial Intelligence Applications and Innovations, Springer, Cham, pp. 191-203. https://doi.org/10.1007/978-3-319-44944-9_17
  20. Anezakis, V.-D., Dermetzis, K., Iliadis, L., Spartalis, S., 2016b. Fuzzy Cognitive Maps for Long-Term Prognosis of the Evolution of Atmospheric Pollution, Based on Climate Change Scenarios: The Case of Athens, in: Computational Collective Intelligence, Lecture Notes in Computer Science. Presented at the International Conference on Computational Collective Intelligence, Springer, Cham, pp. 175-186. https://doi.org/10.1007/978-3-319-45243-2_16
  21. Anezakis, V.-D., Iliadis, L., Demertzis, K., Mallinis, G., 2017b. Hybrid Soft Computing Analytics of Cardiorespiratory Morbidity and Mortality Risk Due to Air Pollution, in: Information Systems for Crisis Response and Management in Mediterranean Countries, Lecture Notes in Business Information Processing. Presented at the International Conference on Information Systems for Crisis Response and Management in Mediterranean Countries, Springer, Cham, pp. 87-105. https://doi.org/10.1007/978-3-319-67633-3_8
  22. Anezakis, V.D., Mallinis, G., Iliadis, L., Demertzis, K., 2018. Soft computing forecasting of cardiovascular and respiratory incidents based on climate change scenarios, in: 2018 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS). Presented at the 2018 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), pp. 1-8. https://doi.org/10.1109/EAIS.2018.8397174
  23. Bougoudis, I., Demertzis, K., Iliadis, L., 2016a. Fast and low cost prediction of extreme air pollution values with hybrid unsupervised learning. Integrated Computer-Aided Engineering 23, 115-127. https://doi.org/10/f8dt4t
  24. Bougoudis, I., Demertzis, K., Iliadis, L., 2016b. HISYCOL a hybrid computational intelligence system for combined machine learning: the case of air pollution modeling in Athens. Neural Comput & Applic 27, 1191-1206. https://doi.org/10/f8r7vf
  25. Bougoudis, I., Demertzis, K., Iliadis, L., Anezakis, V.-D., Papaleonidas, A., 2018. FuSSFFra, a fuzzy semi-supervised forecasting framework: the case of the air pollution in Athens. Neural Computing and Applications 29. https://doi.org/10/gc9bbf
  26. Bougoudis, I., Demertzis, K., Iliadis, L., Anezakis, V.-D., Papaleonidas, A., 2016c. Semi- supervised Hybrid Modeling of Atmospheric Pollution in Urban Centers, in: Engineering Applications of Neural Networks, Communications in Computer and Information Science. Presented at the International Conference on Engineering Applications of Neural Networks, Springer, Cham, pp. 51-63. https://doi.org/10.1007/978-3-319-44188-7_4
  27. Demertzis, K., Iliadis, L., 2018a. A Computational Intelligence System Identifying Cyber-Attacks on Smart Energy Grids, in: Modern Discrete Mathematics and Analysis, Springer Optimization and Its Applications. Springer, Cham, pp. 97-116. https://doi.org/10.1007/978-3-319-74325-7_5
  28. Demertzis, K., Iliadis, L., 2018b. The Impact of Climate Change on Biodiversity: The Ecological Consequences of Invasive Species in Greece, in: Handbook of Climate Change Communication: Vol. 1, Climate Change Management. Springer, Cham, pp. 15-38. https://doi.org/10.1007/978-3-319-69838-0_2
  29. Demertzis, K., Iliadis, L., 2017. Detecting invasive species with a bio-inspired semi- supervised neurocomputing approach: the case of Lagocephalus sceleratus. Neural Computing and Applications 28. https://doi.org/10/gbkgb7
  30. Demertzis, K., Iliadis, L., 2016a. Bio-inspired Hybrid Intelligent Method for Detecting Android Malware, in: Knowledge, Information and Creativity Support Systems, Advances in Intelligent Systems and Computing. Springer, Cham, pp. 289-304. https://doi.org/10.1007/978-3-319-27478-2_20
  31. Demertzis, K., Iliadis, L., 2016b. Adaptive Elitist Differential Evolution Extreme Learning Machines on Big Data: Intelligent Recognition of Invasive Species, in: Advances in Big Data, Advances in Intelligent Systems and Computing. Presented at the INNS Conference on Big Data, Springer, Cham, pp. 333-345. https://doi.org/10.1007/978-3-319-47898-2_34
  32. Demertzis, K., Iliadis, L., 2015a. A Bio-Inspired Hybrid Artificial Intelligence Framework for Cyber Security, in: Computation, Cryptography, and Network Security. Springer, Cham, pp. 161-193. https://doi.org/10.1007/978-3-319-18275-9_7
  33. Demertzis, K., Iliadis, L., 2015b. SAME: An Intelligent Anti-malware Extension for Android ART Virtual Machine, in: Computational Collective Intelligence, Lecture Notes in Computer Science. Springer, Cham, pp. 235-245. https://doi.org/10.1007/978-3- 319-24306-1_23
  34. Demertzis, K., Iliadis, L., 2015c. Evolving Smart URL Filter in a Zone-Based Policy Firewall for Detecting Algorithmically Generated Malicious Domains, in: Statistical Learning and Data Sciences, Lecture Notes in Computer Science. Presented at the International Symposium on Statistical Learning and Data Sciences, Springer, Cham, pp. 223-233. https://doi.org/10.1007/978-3-319-17091-6_17
  35. Demertzis, K., Iliadis, L., 2015d. Intelligent Bio-Inspired Detection of Food Borne Pathogen by DNA Barcodes: The Case of Invasive Fish Species Lagocephalus Sceleratus, in: Engineering Applications of Neural Networks, Communications in Computer and Information Science. Presented at the International Conference on Engineering Applications of Neural Networks, Springer, Cham, pp. 89-99. https://doi.org/10.1007/978-3-319-23983-5_9
  36. Demertzis, K., Iliadis, L., 2014. Evolving Computational Intelligence System for Malware Detection, in: Advanced Information Systems Engineering Workshops, Lecture Notes in Business Information Processing. Presented at the International Conference on Advanced Information Systems Engineering, Springer, Cham, pp. 322- 334. https://doi.org/10.1007/978-3-319-07869-4_30
  37. Demertzis, K., Iliadis, L., 2013. A Hybrid Network Anomaly and Intrusion Detection Approach Based on Evolving Spiking Neural Network Classification, in: E-Democracy, Security, Privacy and Trust in a Digital World, Communications in Computer and Information Science. Presented at the International Conference on e-Democracy, Springer, Cham, pp. 11-23. https://doi.org/10.1007/978-3-319-11710-2_2
  38. Demertzis, Konstantinos, Iliadis, L., Anezakis, V.-D., 2017a. Commentary: Aedes albopictus and Aedes japonicus-two invasive mosquito species with different temperature niches in Europe. Front. Environ. Sci. 5. https://doi.org/10/gdp865
  39. Demertzis, Kostantinos, Iliadis, L., Avramidis, S., El-Kassaby, Y.A., 2017. Machine learning use in predicting interior spruce wood density utilizing progeny test information. Neural Comput & Applic 28, 505-519. https://doi.org/10/gdp86z
  40. Demertzis, Konstantinos, Iliadis, L., Spartalis, S., 2017b. A Spiking One-Class Anomaly Detection Framework for Cyber-Security on Industrial Control Systems, in: Engineering Applications of Neural Networks, Communications in Computer and Information Science. Presented at the International Conference on Engineering Applications of Neural Networks, Springer, Cham, pp. 122-134. https://doi.org/10.1007/978-3-319-65172-9_11
  41. Demertzis, K., Iliadis, L.S., Anezakis, V.-D., 2018a. An innovative soft computing system for smart energy grids cybersecurity. Advances in Building Energy Research 12, 3-24. https://doi.org/10/gdp862
  42. Demertzis, K., Iliadis, L.S., Anezakis, V.-D., 2018b. Extreme deep learning in biosecurity: the case of machine hearing for marine species identification. Journal of Information and Telecommunication 0, 1-19. https://doi.org/10/gdwszn
  43. Dimou, V., Anezakis, V.-D., Demertzis, K., Iliadis, L., 2018. Comparative analysis of exhaust emissions caused by chainsaws with soft computing and statistical approaches. Int. J. Environ. Sci. Technol. 15, 1597-1608. https://doi.org/10/gdp864
  44. Anezakis, VD., Demertzis, K., Iliadis, L. et al. Evolving Systems (2017). https://doi.org/10.1007/s12530-017-9196-6, Hybrid intelligent modeling of wild fires risk, Springer.
  45. Demertzis K., Anezakis VD., Iliadis L., Spartalis S. (2018) Temporal Modeling of Invasive Species' Migration in Greece from Neighboring Countries Using Fuzzy Cognitive Maps. In: Iliadis L., Maglogiannis I., Plagianakos V. (eds) Artificial Intelligence Applications and Innovations. AIAI 2018. IFIP Advances in Information and Communication Technology, vol 519. Springer, Cham.
  46. Konstantinos Rantos, George Drosatos, Konstantinos Demertzis, Christos Ilioudis and Alexandros Papanikolaou. Blockchain-based Consents Management for Personal Data Processing in the IoT Ecosystem. In proceedings of the 15th International Conference on Security and Cryptography (SECRYPT 2018), part of ICETE, pages 572-577, SCITEPRESS, Porto, Portugal, 26-28 July 2018.