Academia.eduAcademia.edu

Outline

Advanced Information Systems Engineering Workshops

Abstract

Recent malware developments have the ability to remain hidden during infection and operation. They prevent analysis and removal, using various techniques, namely: obscure filenames, modification of file attributes, or operation under the pretense of legitimate programs and services. Also, the malware might attempt to subvert modern detection software, by hiding running processes, network connections and strings with malicious URLs or registry keys. The malware can go a step further and obfuscate the entire file with a packer, which is special software that takes the original malware file and compresses it, thus making all the original code and data unreadable. This paper proposes a novel approach, which uses minimum computational power and resources, to indentify Packed Executable (PEX), so as to spot the existence of malware software. It is an Evolving Computational Intelligence System for Malware Detection (ECISMD) which performs classification by Evolving Spiking Neural Networks (eSNN), in order to properly label a packed executable. On the other hand, it uses an Evolving Classification Function (ECF) for the detection of malwares and applies Genetic Algorithms to achieve ECF Optimization.

References (64)

  1. Yan, W., Zhang, Z., Ansari, N.: Revealing Packed Malware. IEEE (2007)
  2. Cesare, S., Xiang, Y.: Software Similarity and Classification. Springer (2012)
  3. Babar, K., Khalid, F.: Generic unpacking techniques. In: Proceedings of the 2nd International Conference on Computer, Control and Communication (IC4), pp. 1-6. IEEE (2009)
  4. Royal, P., Halpin, M., Dagon, D., Edmonds, R.: Polyunpack: Automating the hidden-code extraction of unpack-executing malware. In: ACSAC, pp. 289-300 (2006)
  5. Kang, M., Poosankam, P., Yin, H.: Renovo: A hidden code extractor for packed executables. In: 2007 ACM Workshop on Recurring Malcode, pp. 46-53. ACM (2007)
  6. Martignoni, L., Christodorescu, M., Jha, S.: Omniunpack: Fast, generic, and safe unpacking of malware. In: Proceedings of the ACSAC, pp. 431-441 (2007)
  7. Yegneswaran, V., Saidi, H., Porras, P., Sharif, M.: Eureka: A framework for enabling static analysis on malware, Technical report, Technical Report SRI-CSL-08-01 (2008)
  8. Danielescu, A.: Anti-debugging and anti-emulation techniques: Code-Breakers J. (2008)
  9. Shafiq, M.Z., Tabish, S.M., Mirza, F., Farooq, M.: PE-Miner: Mining Structural Information to Detect Malicious Executables in Realtime. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID 2009. LNCS, vol. 5758, pp. 121-141. Springer, Heidelberg (2009)
  10. Shaq, M., Tabish, S., Farooq, M.: PE-Probe: Leveraging Packer Detection and Structural Information to Detect Malicious Portable Executables. In: Virus Bulletin Conference (2009)
  11. Perdisci, R., Lanzi, A., Lee, W.: McBoost: Boosting scalability in malware collection and analysis using statistical classiffication of executables. In: Proceedings of the 2008 Annual Computer Security Applications Conference, pp. 301-310 (2008) ISSN 1063-9527
  12. Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables in the wild. Journal of Machine Learning Research 7, 2721-2744 (2006)
  13. Ugarte-Pedrero, X., Santos, I., Bringas, P.G., Gastesi, M., Esparza, J.M.: Semi-supervised Learning for Packed Executable Detection. IEEE (2011) 978-1-4577-0460-4/11
  14. Ugarte-Pedrero, X., Santos, I., Laorden, C., Sanz, B., Bringas, G.P.: Collective Classification for Packed Executable Identification. In: ACM CEAS, pp. 23-30 (2011)
  15. Gavrilut, D., Cimpoes, M., Anton, D., Ciortuz, L.: Malware Detection Using Machine Learning. In: Proceedings of the International Multiconference on Computer Science and Information Technology, pp. 735-741 (2009) ISBN 978-83-60810-22-4
  16. Ye, Y., Wang, D., Li, T., Ye, D.: Imds: intelligent malware detection system. ACM (2007)
  17. Chandrasekaran, M., Vidyaraman, V., Upadhyaya, S.J.: Spycon: Emulating user activities to detect evasive spyware, IPCCC. IEEE Computer Society, 502-550 (2007)
  18. Chouchane, M.R., Walenstein, A., Lakhotia, A.: Using Markov Chains to filter machine- morphed variants of malicious programs. In: 3rd International Conference on Malicious and Unwanted Software, MALWARE 2008, pp. 77-84 (2008)
  19. Stamp, M., Attaluri, S.: McGhee S.: Profile hidden markov models and metamorphic virus detection. Journal in Computer Virology (2008)
  20. Santamarta, R.: Generic detection and classification of polymorphic malware using neural pattern recognition (2006)
  21. Yoo, I.: Visualizing Windows executable viruses using self-organizing maps. In: VizSEC/DMSEC 2004: ACM Workshop (2004)
  22. Schliebs, S., Kasabov, N.: Evolving spiking neural network-a survey. Evolving Systems 4(2), 87-98 (2013)
  23. Thorpe, S.J., Delorme, A.: Rufin van Rullen: Spike-based strategies for rapid processing. Neural Networks 14(6-7), 715-725 (2001)
  24. Delorme, A., Perrinet, L., Thorpe, S.J.: Networks of Integrate-and-Fire Neurons using Rank Order Coding B: Spike Timing Dependant Plasticity and Emergence of Orientation Selectivity. Published in Neurocomputing 38-40(1-4), 539-545 (2000)
  25. Thorpe, S.J., Gautrais, J.: Rank order coding. In: CNS 1997: Proceedings of the 6th Annual Conference on Computational Neuroscience: Trends in Research, New York, NY, USA, pp. 113-118. Plenum Press (1998)
  26. Kasabov, N.: Evolving connectionist systems: Methods and Applications in Bioinformatics. In: Yu, P.X., Kacprzyk, P.J. (eds.) Brain Study and Intelligent Machines. Springer, NY (2002)
  27. Wysoski, S.G., Benuskova, L., Kasabov, N.: Adaptive learning procedure for a network of spiking neurons and visual pattern recognition. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2006. LNCS, vol. 4179, pp. 1133-1142. Springer, Heidelberg (2006)
  28. Schliebs, S., Defoin-Platel, M., Kasabov, N.: Integrated feature and parameter optimization for an evolving spiking neural network. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008, Part I. LNCS, vol. 5506, pp. 1229-1236. Springer, Heidelberg (2009)
  29. Song Q., Kasabov N.: Weighted Data Normalization and Feature Selection. In: Proc. of the 8th Intelligence Information Systems Conference (2003)
  30. Huang, L., Song, Q., Kasabov, N.: Evolving Connectionist System Based Role Allocation for Robotic Soccer. International Journal of Advanced Robotic Systems 5(1), 59-62 (2008) ISSN 1729-8806
  31. Kasabov, N.: Evolving fuzzy neural networks for online supervised/ unsupervised, knowledge-based learning. IEEE Trans. Cybernetics 31(6), 902-918 (2001)
  32. Kasabov, N., Song, Q.: DENFIS: Dynamic, evolving neural-fuzzy inference systems and its application for time-series prediction. IEEE Trans. 10(2), 144-154 (2002)
  33. Goh, L., Song, Q., Kasabov, N.: A Novel Feature Selection Method to Improve Classification of Gene Expression Data. In: 2nd Asia-Pacific IT Conf. vol. 29 (2004)
  34. Kasabov, N., Song, Q.: GA-parameter optimization of evolving connectionist systems for classification and a case study from bioinformatics. In: Neural Information ICONIP 2002 Proceedings of the 9th International Conference on, IEEE ICONIP, 1198128 (2002) 35. http://www.kedri.aut.ac.nz/
  35. Anezakis, V.-D., Demertzis, K., Iliadis, L., 2018. Classifying with fuzzy chi-square test: The case of invasive species. AIP Conference Proceedings 1978, 290003. https://doi.org/10/gdtm5q
  36. Anezakis, V.-D., Demertzis, K., Iliadis, L., Spartalis, S., 2017a. Hybrid intelligent modeling of wild fires risk. Evolving Systems 1-17. https://doi.org/10/gdp863
  37. Anezakis, V.-D., Demertzis, K., Iliadis, L., Spartalis, S., 2016a. A Hybrid Soft Computing Approach Producing Robust Forest Fire Risk Indices, in: Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology. Presented at the IFIP International Conference on Artificial Intelligence Applications and Innovations, Springer, Cham, pp. 191-203. https://doi.org/10.1007/978-3-319-44944-9_17
  38. Anezakis, V.-D., Dermetzis, K., Iliadis, L., Spartalis, S., 2016b. Fuzzy Cognitive Maps for Long-Term Prognosis of the Evolution of Atmospheric Pollution, Based on Climate Change Scenarios: The Case of Athens, in: Computational Collective Intelligence, Lecture Notes in Computer Science. Presented at the International Conference on Computational Collective Intelligence, Springer, Cham, pp. 175-186. https://doi.org/10.1007/978-3-319-45243-2_16
  39. Anezakis, V.-D., Iliadis, L., Demertzis, K., Mallinis, G., 2017b. Hybrid Soft Computing Analytics of Cardiorespiratory Morbidity and Mortality Risk Due to Air Pollution, in: Information Systems for Crisis Response and Management in Mediterranean Countries, Lecture Notes in Business Information Processing. Presented at the International Conference on Information Systems for Crisis Response and Management in Mediterranean Countries, Springer, Cham, pp. 87-105. https://doi.org/10.1007/978-3-319-67633-3_8
  40. Anezakis, V.D., Mallinis, G., Iliadis, L., Demertzis, K., 2018. Soft computing forecasting of cardiovascular and respiratory incidents based on climate change scenarios, in: 2018 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS). Presented at the 2018 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), pp. 1-8. https://doi.org/10.1109/EAIS.2018.8397174
  41. Bougoudis, I., Demertzis, K., Iliadis, L., 2016a. Fast and low cost prediction of extreme air pollution values with hybrid unsupervised learning. Integrated Computer-Aided Engineering 23, 115-127. https://doi.org/10/f8dt4t
  42. Bougoudis, I., Demertzis, K., Iliadis, L., 2016b. HISYCOL a hybrid computational intelligence system for combined machine learning: the case of air pollution modeling in Athens. Neural Comput & Applic 27, 1191-1206. https://doi.org/10/f8r7vf
  43. Bougoudis, I., Demertzis, K., Iliadis, L., Anezakis, V.-D., Papaleonidas, A., 2018. FuSSFFra, a fuzzy semi-supervised forecasting framework: the case of the air pollution in Athens. Neural Computing and Applications 29. https://doi.org/10/gc9bbf
  44. Bougoudis, I., Demertzis, K., Iliadis, L., Anezakis, V.-D., Papaleonidas, A., 2016c. Semi- supervised Hybrid Modeling of Atmospheric Pollution in Urban Centers, in: Engineering Applications of Neural Networks, Communications in Computer and Information Science. Presented at the International Conference on Engineering Applications of Neural Networks, Springer, Cham, pp. 51-63. https://doi.org/10.1007/978-3-319-44188-7_4
  45. Demertzis, K., Iliadis, L., 2018a. A Computational Intelligence System Identifying Cyber-Attacks on Smart Energy Grids, in: Modern Discrete Mathematics and Analysis, Springer Optimization and Its Applications. Springer, Cham, pp. 97-116. https://doi.org/10.1007/978-3-319-74325-7_5
  46. Demertzis, K., Iliadis, L., 2018b. The Impact of Climate Change on Biodiversity: The Ecological Consequences of Invasive Species in Greece, in: Handbook of Climate Change Communication: Vol. 1, Climate Change Management. Springer, Cham, pp. 15-38. https://doi.org/10.1007/978-3-319-69838-0_2
  47. Demertzis, K., Iliadis, L., 2017. Detecting invasive species with a bio-inspired semi- supervised neurocomputing approach: the case of Lagocephalus sceleratus. Neural Computing and Applications 28. https://doi.org/10/gbkgb7
  48. Demertzis, K., Iliadis, L., 2016a. Hybrid Intelligent Method for Detecting Android Malware, in: Knowledge, Information and Creativity Support Systems, Advances in Intelligent Systems and Computing. Springer, Cham, pp. 289-304. https://doi.org/10.1007/978-3-319-27478-2_20
  49. Demertzis, K., Iliadis, L., 2016b. Adaptive Elitist Differential Evolution Extreme Learning Machines on Big Data: Intelligent Recognition of Invasive Species, in: Advances in Big Data, Advances in Intelligent Systems and Computing. Presented at the INNS Conference on Big Data, Springer, Cham, pp. 333-345. https://doi.org/10.1007/978-3-319-47898-2_34
  50. Demertzis, K., Iliadis, L., 2015a. A Bio-Inspired Hybrid Artificial Intelligence Framework for Cyber Security, in: Computation, Cryptography, and Network Security. Springer, Cham, pp. 161-193. https://doi.org/10.1007/978-3-319-18275-9_7
  51. Demertzis, K., Iliadis, L., 2015b. SAME: An Intelligent Anti-malware Extension for Android ART Virtual Machine, in: Computational Collective Intelligence, Lecture Notes in Computer Science. Springer, Cham, pp. 235-245. https://doi.org/10.1007/978-3- 319-24306-1_23
  52. Demertzis, K., Iliadis, L., 2015c. Evolving Smart URL Filter in a Zone-Based Policy Firewall for Detecting Algorithmically Generated Malicious Domains, in: Statistical Learning and Data Sciences, Lecture Notes in Computer Science. Presented at the International Symposium on Statistical Learning and Data Sciences, Springer, Cham, pp. 223-233. https://doi.org/10.1007/978-3-319-17091-6_17
  53. Demertzis, K., Iliadis, L., 2015d. Intelligent Bio-Inspired Detection of Food Borne Pathogen by DNA Barcodes: The Case of Invasive Fish Species Lagocephalus Sceleratus, in: Engineering Applications of Neural Networks, Communications in Computer and Information Science. Presented at the International Conference on Engineering Applications of Neural Networks, Springer, Cham, pp. 89-99. https://doi.org/10.1007/978-3-319-23983-5_9
  54. Demertzis, K., Iliadis, L., 2014. Evolving Computational Intelligence System for Malware Detection, in: Advanced Information Systems Engineering Workshops, Lecture Notes in Business Information Processing. Presented at the International Conference on Advanced Information Systems Engineering, Springer, Cham, pp. 322- 334. https://doi.org/10.1007/978-3-319-07869-4_30
  55. Demertzis, K., Iliadis, L., 2013. A Hybrid Network Anomaly and Intrusion Detection Approach Based on Evolving Spiking Neural Network Classification, in: E-Democracy, Security, Privacy and Trust in a Digital World, Communications in Computer and Information Science. Presented at the International Conference on e-Democracy, Springer, Cham, pp. 11-23. https://doi.org/10.1007/978-3-319-11710-2_2
  56. Demertzis, Konstantinos, Iliadis, L., Anezakis, V.-D., 2017a. Commentary: Aedes albopictus and Aedes japonicus-two invasive mosquito species with different temperature niches in Europe. Front. Environ. Sci. 5. https://doi.org/10/gdp865
  57. Demertzis, Kostantinos, Iliadis, L., Avramidis, S., El-Kassaby, Y.A., 2017. Machine learning use in predicting interior spruce wood density utilizing progeny test information. Neural Comput & Applic 28, 505-519. https://doi.org/10/gdp86z
  58. Demertzis, Konstantinos, Iliadis, L., Spartalis, S., 2017b. A Spiking One-Class Anomaly Detection Framework for Cyber-Security on Industrial Control Systems, in: Engineering Applications of Neural Networks, Communications in Computer and Information Science. Presented at the International Conference on Engineering Applications of Neural Networks, Springer, Cham, pp. 122-134. https://doi.org/10.1007/978-3-319-65172-9_11
  59. Demertzis, K., Iliadis, L.S., Anezakis, V.-D., 2018a. An innovative soft computing system for smart energy grids cybersecurity. Advances in Building Energy Research 12, 3-24. https://doi.org/10/gdp862
  60. Demertzis, K., Iliadis, L.S., Anezakis, V.-D., 2018b. Extreme deep learning in biosecurity: the case of machine hearing for marine species identification. Journal of Information and Telecommunication 0, 1-19. https://doi.org/10/gdwszn
  61. Dimou, V., Anezakis, V.-D., Demertzis, K., Iliadis, L., 2018. Comparative analysis of exhaust emissions caused by chainsaws with soft computing and statistical approaches. Int. J. Environ. Sci. Technol. 15, 1597-1608. https://doi.org/10/gdp864
  62. Anezakis, VD., Demertzis, K., Iliadis, L. et al. Evolving Systems (2017). https://doi.org/10.1007/s12530-017-9196-6, Hybrid intelligent modeling of wild fires risk, Springer.
  63. Demertzis K., Anezakis VD., Iliadis L., Spartalis S. (2018) Temporal Modeling of Invasive Species' Migration in Greece from Neighboring Countries Using Fuzzy Cognitive Maps. In: Iliadis L., Maglogiannis I., Plagianakos V. (eds) Artificial Intelligence Applications and Innovations. AIAI 2018. IFIP Advances in Information and Communication Technology, vol 519. Springer, Cham.
  64. Konstantinos Rantos, George Drosatos, Konstantinos Demertzis, Christos Ilioudis and Alexandros Papanikolaou. Blockchain-based Consents Management for Personal Data Processing in the IoT Ecosystem. In proceedings of the 15th International Conference on Security and Cryptography (SECRYPT 2018), part of ICETE, pages 572-577, SCITEPRESS, Porto, Portugal, 26-28 July 2018.