Academia.eduAcademia.edu

Outline

Zero-Turbulence Manifold in a Toroidal Plasma

2012, Physical Review Letters

https://doi.org/10.1103/PHYSREVLETT.109.265001

Abstract

Sheared toroidal flows can cause bifurcations to zero-turbulent-transport states in tokamak plasmas. The maximum temperature gradients that can be reached are limited by subcritical turbulence driven by the parallel velocity gradient. Here it is shown that q/ǫ (magnetic field pitch/inverse aspect ratio) is a critical control parameter for sheared tokamak turbulence. By reducing q/ǫ, far higher temperature gradients can be achieved without triggering turbulence, in some instances comparable to those found experimentally in transport barriers. The zero-turbulence manifold is mapped out, in the zero-magnetic-shear limit, over the parameter space (γE, q/ǫ, R/LT ), where γE is the perpendicular flow shear and R/LT is the normalised inverse temperature gradient scale. The extent to which it can be constructed from linear theory is discussed.

References (40)

  1. * Electronic address: edmund.highcock@physics.ox.ac.uk
  2. K. Burrell, Phys. Plasmas 4, 1499 (1997).
  3. R. Wolf, Plasma Phys. Control. Fusion 45, R1 (2003).
  4. P. C. Vries, E. Joffrin, M. Brix, C. D. Challis, K. Crombé, B. Esposito, N. C. Hawkes, C. Giroud, J. Hobirk, J. Lönnroth, et al., Nucl. Fusion 49, 075007 (2009).
  5. R. Waltz, G. Kerbel, and J. Milovich, Phys. Plasmas 1, 2229 (1994).
  6. A. Dimits, B. Cohen, W. Nevins, and D. Shumaker, Nucl. Fusion 41, 1725 (2001).
  7. J. E. Kinsey, R. E. Waltz, and J. Candy, Phys. Plasmas 12, 062302 (2005).
  8. C. Roach, I. Abel, R. Akers, W. Arter, M. Barnes, Y. Camenen, F. Casson, G. Colyer, J. Connor, S. Cowley, et al., Plasma Phys. Control. Fusion 51, 124020 (2009).
  9. P. Catto, M. Rosenbluth, and C. Liu, Phys. Fluids 16, 1719 (1973).
  10. S. L. Newton, S. C. Cowley, and N. F. Loureiro, Plasma Phys. Control. Fusion 52, 125001 (2010).
  11. A. A. Schekochihin, E. G. Highcock, and S. C. Cowley, Plasma Phys. Control. Fusion, in press (2012), (e-print arXiv:1111.4929).
  12. M. Barnes, F. Parra, E. Highcock, A. Schekochihin, S. Cowley, and C. Roach, Phys. Rev. Lett. 106, 175004 (2011).
  13. E. G. Highcock, M. Barnes, A. A. Schekochihin, F. I. Parra, C. Roach, and S. C. Cowley, Phys. Rev. Lett. 105, 215003 (2010).
  14. E. Highcock, M. Barnes, F. Parra, A. Schekochihin, C. Roach, and S. Cowley, Phys. Plasmas 18, 102304 (2011).
  15. F. I. Parra, M. Barnes, E. G. Highcock, A. A. Schekochi- hin, and S. C. Cowley, Phys. Rev. Lett. 106, 115004 (2011).
  16. A. Sips, Y. Baranov, C. Challis, G. Cottrell, L. Eriks- son, C. Gormezano, C. Gowers, C. Greenfield, J. Haas, M. Hellerman, et al., Plasma Phys. Control. Fusion 40, 1171 (1998).
  17. P. Mantica, C. Angioni, B. Baiocchi, M. Baruzzo, M. Beurskens, J. Bizarro, R. Budny, P. Buratti, A. Casati, C. Challis, et al., Plasma Phys. Control. Fu- sion 53, 124033 (2011).
  18. A. Field, C. Michael, R. Akers, J. Candy, G. Colyer, W. Guttenfelder, Y. Ghim, C. Roach, and S. Saarelma, Nucl. Fusion 51, 063006 (2011).
  19. E. A. Frieman and L. Chen, Phys. Fluids 25, 502 (1982).
  20. I. G. Abel et al., Plasma Phys. Control. Fusion, in prepa- ration (2012).
  21. M. Kotschenreuther, G. W. Rewoldt, and W. M. Tang, Comp. Phys. Comm. 88, 128 (1995).
  22. F. Jenko, W. Dorland, M. Kotschenreuther, and B. N. Rogers, Phys. Plasmas 7, 1904 (2000).
  23. W. Dorland, E. G. Highcock, M. Barnes, G. W. Ham- mett, G. Colyer, et al., Gyrokinetic Simulations Project (2009), URL http://gyrokinetics.sourceforge.net/.
  24. A. M. Dimits, G. Bateman, M. A. Beer, B. I. Cohen, W. Dorland, G. W. Hammett, C. Kim, J. E. Kinsey, M. Kotschenreuther, A. H. Kritz, et al., Phys. Plasmas 7, 969 (2000).
  25. I. Abel, M. Barnes, S. Cowley, W. Dorland, and A. Schekochihin, Phys. Plasmas 15, 122509 (2008).
  26. M. Barnes, I. G. Abel, T. Tatsuno, A. A. Schekochihin, S. C. Cowley, and W. Dorland, Phys. Plasmas 16, 072107 (2008).
  27. J. Baggett, T. Driscoll, and L. Trefethen, Phys. Fluids 7, 833 (1995).
  28. R. Kerswell, Nonlinearity 18, R17 (2005).
  29. M. Buhmann, Acta Numerica 9, 1 (2001).
  30. R. Numata, G. Howes, T. Tatsuno, M. Barnes, and W. Dorland, J. Comp. Phys. 229, 9347 (2010).
  31. A. G. Peeters, C. Angioni, and D. Strintzi, Phys. Rev. Lett. 98, 265003 (2007).
  32. F. Casson, A. Peeters, C. Angioni, Y. Camenen, W. Hornsby, A. Snodin, and G. Szepesi, Phys. Plasmas 17, 102305 (2010).
  33. The JET Team, Nucl. Fusion 39, 1619 (1999).
  34. C. C. Petty, M. R. Wade, J. E. Kinsey, R. J. Groebner, T. C. Luce, and G. M. Staebler, Phys. Rev. Lett. 83, 3661 (1999).
  35. M. Barnes, F. Parra, and A. Schekochihin, Phys. Rev. Lett. 107, 115003 (2011).
  36. The impact of these effects on turbulence is studied in Refs. [30, 31].
  37. A temperature ratio of 1 is appropriate for both lower power and future reactor-like conditions, but not for high-performance shots in current devices [16, 32, 33].
  38. The increase at γE = 0 cannot, of course, be due to re- duction of the PVG; we assume that this occurs because of the simultaneous reduction of the maximum parallel length scale qR in the system, leading to weaker ITG turbulence; see [34].
  39. By order of magnitude, γE ∼ M/q, where M is the Mach number of the toroidal flow. Thus, values of γE much above unity are unlikely to be possible.
  40. The ratio of toroidal to poloidal field in MAST can be smaller on the outboard side, so the effective value of q/ǫ for locating this case on the zero-turbulence manifold might be smaller than quoted.