Zero-Turbulence Manifold in a Toroidal Plasma
2012, Physical Review Letters
https://doi.org/10.1103/PHYSREVLETT.109.265001Abstract
Sheared toroidal flows can cause bifurcations to zero-turbulent-transport states in tokamak plasmas. The maximum temperature gradients that can be reached are limited by subcritical turbulence driven by the parallel velocity gradient. Here it is shown that q/ǫ (magnetic field pitch/inverse aspect ratio) is a critical control parameter for sheared tokamak turbulence. By reducing q/ǫ, far higher temperature gradients can be achieved without triggering turbulence, in some instances comparable to those found experimentally in transport barriers. The zero-turbulence manifold is mapped out, in the zero-magnetic-shear limit, over the parameter space (γE, q/ǫ, R/LT ), where γE is the perpendicular flow shear and R/LT is the normalised inverse temperature gradient scale. The extent to which it can be constructed from linear theory is discussed.
References (40)
- * Electronic address: edmund.highcock@physics.ox.ac.uk
- K. Burrell, Phys. Plasmas 4, 1499 (1997).
- R. Wolf, Plasma Phys. Control. Fusion 45, R1 (2003).
- P. C. Vries, E. Joffrin, M. Brix, C. D. Challis, K. Crombé, B. Esposito, N. C. Hawkes, C. Giroud, J. Hobirk, J. Lönnroth, et al., Nucl. Fusion 49, 075007 (2009).
- R. Waltz, G. Kerbel, and J. Milovich, Phys. Plasmas 1, 2229 (1994).
- A. Dimits, B. Cohen, W. Nevins, and D. Shumaker, Nucl. Fusion 41, 1725 (2001).
- J. E. Kinsey, R. E. Waltz, and J. Candy, Phys. Plasmas 12, 062302 (2005).
- C. Roach, I. Abel, R. Akers, W. Arter, M. Barnes, Y. Camenen, F. Casson, G. Colyer, J. Connor, S. Cowley, et al., Plasma Phys. Control. Fusion 51, 124020 (2009).
- P. Catto, M. Rosenbluth, and C. Liu, Phys. Fluids 16, 1719 (1973).
- S. L. Newton, S. C. Cowley, and N. F. Loureiro, Plasma Phys. Control. Fusion 52, 125001 (2010).
- A. A. Schekochihin, E. G. Highcock, and S. C. Cowley, Plasma Phys. Control. Fusion, in press (2012), (e-print arXiv:1111.4929).
- M. Barnes, F. Parra, E. Highcock, A. Schekochihin, S. Cowley, and C. Roach, Phys. Rev. Lett. 106, 175004 (2011).
- E. G. Highcock, M. Barnes, A. A. Schekochihin, F. I. Parra, C. Roach, and S. C. Cowley, Phys. Rev. Lett. 105, 215003 (2010).
- E. Highcock, M. Barnes, F. Parra, A. Schekochihin, C. Roach, and S. Cowley, Phys. Plasmas 18, 102304 (2011).
- F. I. Parra, M. Barnes, E. G. Highcock, A. A. Schekochi- hin, and S. C. Cowley, Phys. Rev. Lett. 106, 115004 (2011).
- A. Sips, Y. Baranov, C. Challis, G. Cottrell, L. Eriks- son, C. Gormezano, C. Gowers, C. Greenfield, J. Haas, M. Hellerman, et al., Plasma Phys. Control. Fusion 40, 1171 (1998).
- P. Mantica, C. Angioni, B. Baiocchi, M. Baruzzo, M. Beurskens, J. Bizarro, R. Budny, P. Buratti, A. Casati, C. Challis, et al., Plasma Phys. Control. Fu- sion 53, 124033 (2011).
- A. Field, C. Michael, R. Akers, J. Candy, G. Colyer, W. Guttenfelder, Y. Ghim, C. Roach, and S. Saarelma, Nucl. Fusion 51, 063006 (2011).
- E. A. Frieman and L. Chen, Phys. Fluids 25, 502 (1982).
- I. G. Abel et al., Plasma Phys. Control. Fusion, in prepa- ration (2012).
- M. Kotschenreuther, G. W. Rewoldt, and W. M. Tang, Comp. Phys. Comm. 88, 128 (1995).
- F. Jenko, W. Dorland, M. Kotschenreuther, and B. N. Rogers, Phys. Plasmas 7, 1904 (2000).
- W. Dorland, E. G. Highcock, M. Barnes, G. W. Ham- mett, G. Colyer, et al., Gyrokinetic Simulations Project (2009), URL http://gyrokinetics.sourceforge.net/.
- A. M. Dimits, G. Bateman, M. A. Beer, B. I. Cohen, W. Dorland, G. W. Hammett, C. Kim, J. E. Kinsey, M. Kotschenreuther, A. H. Kritz, et al., Phys. Plasmas 7, 969 (2000).
- I. Abel, M. Barnes, S. Cowley, W. Dorland, and A. Schekochihin, Phys. Plasmas 15, 122509 (2008).
- M. Barnes, I. G. Abel, T. Tatsuno, A. A. Schekochihin, S. C. Cowley, and W. Dorland, Phys. Plasmas 16, 072107 (2008).
- J. Baggett, T. Driscoll, and L. Trefethen, Phys. Fluids 7, 833 (1995).
- R. Kerswell, Nonlinearity 18, R17 (2005).
- M. Buhmann, Acta Numerica 9, 1 (2001).
- R. Numata, G. Howes, T. Tatsuno, M. Barnes, and W. Dorland, J. Comp. Phys. 229, 9347 (2010).
- A. G. Peeters, C. Angioni, and D. Strintzi, Phys. Rev. Lett. 98, 265003 (2007).
- F. Casson, A. Peeters, C. Angioni, Y. Camenen, W. Hornsby, A. Snodin, and G. Szepesi, Phys. Plasmas 17, 102305 (2010).
- The JET Team, Nucl. Fusion 39, 1619 (1999).
- C. C. Petty, M. R. Wade, J. E. Kinsey, R. J. Groebner, T. C. Luce, and G. M. Staebler, Phys. Rev. Lett. 83, 3661 (1999).
- M. Barnes, F. Parra, and A. Schekochihin, Phys. Rev. Lett. 107, 115003 (2011).
- The impact of these effects on turbulence is studied in Refs. [30, 31].
- A temperature ratio of 1 is appropriate for both lower power and future reactor-like conditions, but not for high-performance shots in current devices [16, 32, 33].
- The increase at γE = 0 cannot, of course, be due to re- duction of the PVG; we assume that this occurs because of the simultaneous reduction of the maximum parallel length scale qR in the system, leading to weaker ITG turbulence; see [34].
- By order of magnitude, γE ∼ M/q, where M is the Mach number of the toroidal flow. Thus, values of γE much above unity are unlikely to be possible.
- The ratio of toroidal to poloidal field in MAST can be smaller on the outboard side, so the effective value of q/ǫ for locating this case on the zero-turbulence manifold might be smaller than quoted.