Academia.eduAcademia.edu

Outline

BIO RECEPTACLES Designing Material Ecologies in Architecture

Abstract

The discipline of architecture, among others, is also a practice based on materials.

Key takeaways
sparkles

AI

  1. Architecture must innovate by integrating biological processes and materials for sustainable designs.
  2. The paper discusses new material systems inspired by ecology and self-organization in architecture.
  3. Biological systems exhibit emergent properties through interactions at micro and macro levels.
  4. Utilizing algae in building design can enhance energy efficiency and environmental remediation.
  5. Interdisciplinary collaboration is crucial for developing smart materials that adapt to environmental changes.

References (101)

  1. Admiraal, W., Blanck, H., Buckert-de Jong, M., Guasch, H., Ivorra, N., & Lehmann, V. et al. (1999). Short-term toxicity of zinc to microbenthic algae and bacteria in a metal polluted stream. Water Research, 33(9), 1989-1996. doi:10.1016/s0043- 1354(98)00426-6
  2. Armstrong, R. (2011). Is There Something Beyond 'Outside of the Box'?. Architectural Design, 81(6), 130-133. doi:10.1002/ad.1331
  3. Awad, H., Quinn Wickham, M., Leddy, H., Gimble, J., & Guilak, F. (2004). Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials, 25(16), 3211-3222. doi:10.1016/j.biomaterials.2003.10.045
  4. Bath.ac.uk,. (2015). Research | Department of Biology & Biochemistry | University of Bath. Retrieved 11 July 2015, from http://www.bath.ac.uk/bio-sci/research/ Boland, T., Xu, T., Damon, B., & Cui, X. (2006). Application of inkjet printing to tissue engineering. Biotechnol. J., 1(9), 910-917. doi:10.1002/biot.200600081
  5. Brueckner, S. (2005). Engineering self-organising systems. Berlin [u.a.]: Springer.
  6. Cellucomp -sustainable materials,. (2013). Products. Retrieved 14 July 2015, from http://cellucomp.com/products/
  7. Chenite, A., Chaput, C., Wang, D., Combes, C., Buschmann, M., & Hoemann, C. et al. (2000). Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials, 21(21), 2155-2161. doi:10.1016/s0142-9612(00)00116-2
  8. Chinnasamy, S., Hanumantha, R., Bhaskar, S., Rengasamy, R., & Singh, M. (2012). Algae: a novel biomass feedstock for biofuels. In R. Arora (Ed.), Microbial Biotechnology (pp. 224 -239). Oxfordshire: CABI.
  9. Chouteau, C., Dzyadevych, S., Chovelon, J., & Durrieu, C. (2004). Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgaris microalgae. Biosensors And Bioelectronics, 19(9), 1089-1096. doi:10.1016/j.bios.2003.10.012
  10. Dade-Robertson, M., Ramirez Figueroa, C., & Zhang, M. (2015). Material ecologies for synthetic biology: Biomineralization and the state space of design. Computer- Aided Design, 60, 28-39. doi:10.1016/j.cad.2014.02.012
  11. DANTE, R. (2005). Hypotheses for direct PEM fuel cells applications of photobioproduced hydrogen by. International Journal Of Hydrogen Energy, 30(4), 421-424. doi:10.1016/j.ijhydene.2004.02.008
  12. de-Bashan, L., & Bashan, Y. (2010). Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresource Technology, 101(6), 1611-1627. doi:10.1016/j.biortech.2009.09.043
  13. Drugs.com,. (2015). Chitosan Uses, Benefits & Side Effects -Drugs.com Herbal Database. Retrieved 14 July 2015, from http://www.drugs.com/npc/chitosan.html Fedorovich, N., Wijnberg, H., Dhert, W., & Alblas, J. (2011). Distinct Tissue Formation by Heterogeneous Printing of Osteo-and Endothelial Progenitor Cells. Tissue Engineering Part A, 17(15-16), 2113-2121. doi:10.1089/ten.tea.2011.0019
  14. Gánti, T. (2003). The principles of life. Oxford: Oxford University Press.
  15. Gomez, P., Inostroza, I., Pizarro, M., & Perez, J. (2013). From genetic improvement to commercial-scale mass culture of a Chilean strain of the green microalga Haematococcus pluvialis with enhanced productivity of the red ketocarotenoid astaxanthin. Aob Plants, 5(0), plt026-plt026. doi:10.1093/aobpla/plt026
  16. Gorman, D., & Levine, R. (1965). Media for Chlamydomonas: TAP medium.
  17. Chlamy.org. Retrieved 14 July 2015, from http://www.chlamy.org/TAP.html
  18. Guillotin, B., & Guillemot, F. (2011). Cell patterning technologies for organotypic tissue fabrication. Trends In Biotechnology, 29(4), 183-190. doi:10.1016/j.tibtech.2010.12.008
  19. Harding, S. (2006). Animate earth. White River Junction, Vt.: Chelsea Green Pub.
  20. Co. Hemming, S., Sapounas, A., & Voogt, W. (2012). Algenteeltsystemen voor de tuinbouw. Wageningen: Wageningen UR Glastuinbouw.
  21. Hensel, M. (2006). Computing self-organisation: environmentally sensitive growth modelling. Architectural Design, 76(2), pp.12-17.
  22. Hensel, M. (2006). (Synthetic) life architectures: ramifications and potentials of a literal biological paradigm for architectural design. Architectural Design, 76(2), 18-25. doi:10.1002/ad.236
  23. Holmes B. 2009. Earth: the comeback. New Scientist 3 October: 32.
  24. Huang, C., & Qi, Y. (1997). The abundance cycle and influence factors on red tide phenomena of Noctiluca scintillans (Dinophyceae) in Dapeng Bay, the South China Sea. J Plankton Res, 19(3), 303-318. doi:10.1093/plankt/19.3.303
  25. Johnson, S. (2001). Emergence. New York: Scribner.
  26. Kadam, K. (2002). Environmental implications of power generation via coal- microalgae cofiring. Energy, 27(10), 905-922. doi:10.1016/s0360-5442(02)00025-7
  27. Kang, H., Tabata, Y., & Ikada, Y. (1999). Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials, 20(14), 1339-1344. doi:10.1016/s0142- 9612(99)00036-8
  28. Kapdan, I., & Kargi, F. (2006). Bio-hydrogen production from waste materials. Enzyme And Microbial Technology, 38(5), 569-582. doi:10.1016/j.enzmictec.2005.09.015
  29. Kirk, R., Othmer, D., Kroschwitz, J., & Howe-Grant, M. (1991). Encyclopedia of chemical technology. New York: Wiley.
  30. Kuroda, K. (1978) The distribution and ecology of Noctiluca scintillans. Osaka Bay. Bull. Jpn. Soc. Fish. Oceanogr. 32, 56-67 (in Japanese).
  31. Lee, R. (1999). Phycology. Cambridge [England]: Cambridge University Press.
  32. Léonard, A., Dandoy, P., Danloy, E., Leroux, G., Meunier, C., Rooke, J., & Su, B. (2011). Whole-cell based hybrid materials for green energy production, environmental remediation and smart cell-therapy. Chem. Soc. Rev., 40(2), 860. doi:10.1039/c0cs00024h
  33. Levine, I. A. (2010). Algal-based biofuels & biofeeds: economic development, a northeastern perspective.
  34. Lode, A., Krujatz, F., Brüggemeier, S., Quade, M., Schütz, K., & Knaack, S. et al. (2015). Green bioprinting: Fabrication of photosynthetic algae-laden hydrogel scaffolds for biotechnological and medical applications. Engineering In Life Sciences, 15(2), 177-183. doi:10.1002/elsc.201400205
  35. Lode, A., Krujatz, F., Brüggemeier, S., Quade, M., Schütz, K., & Knaack, S. et al. (2015). Green bioprinting: Fabrication of photosynthetic algae-laden hydrogel scaffolds for biotechnological and medical applications. Engineering In Life Sciences, 15(2), 177-183. doi:10.1002/elsc.201400205
  36. McLamb, E. (2011). Earth's Beginnings: The Origins of Life | Ecology Global Network. Ecology Global Network. Retrieved 13 July 2015, from http://www.ecology.com/2011/09/10/earths-beginnings-origins-life/
  37. Menges, A. (2012). Material Computation: Higher Integration in Morphogenetic Design. Architectural Design, 82(2), pp.14-21.
  38. Miyaguchi, H. (2005). Relationship between the bloom of Noctiluca scintillans and environmental factors in the coastal waters of Sagami Bay, Japan. Journal Of Plankton Research, 28(3), 313-324. doi:10.1093/plankt/fbi127
  39. Mogas-Soldevila, L., & Oxman, N. (2015). Water-based Engineering & Fabrication: Large-Scale Additive Manufacturing of Biomaterials. MRS Proc., 1800. doi:10.1557/opl.2015.659
  40. Moreira dos Santos, M., Moreno-Garrido, I., Gonçalves, F., M. Soares, A., & Ribeiro, R. (2002). AN IN SITU BIOASSAY FOR ESTUARINE ENVIRONMENTS USING THE MICROALGA PHAEODACTYLUM TRICORNUTUM. Environ Toxicol Chem, 21(3), 567. doi:10.1897/1551-5028(2002)021<0567:aisbfe>2.0.co;
  41. Moreira, S., Moreira-Santos, M., Guilhermino, L., & Ribeiro, R. (2006). Immobilization of the marine microalga Phaeodactylum tricornutum in alginate for in situ experiments: Bead stability and suitability. Enzyme And Microbial Technology, 38(1-2), 135-141. doi:10.1016/j.enzmictec.2005.05.005
  42. Moreira-Santos, M., Soares, A., & Ribeiro, R. (2004). An in situ bioassay for freshwater environments with the microalga Pseudokirchneriella subcapitata. Ecotoxicology And Environmental Safety, 59(2), 164-173. doi:10.1016/j.ecoenv.2003.07.004
  43. Moreno-Garrido, I. (2008). Microalgae immobilization: Current techniques and uses. Bioresource Technology, 99(10), 3949-3964. doi:10.1016/j.biortech.2007.05.040
  44. Morton, B., & Twentyman, P. (1971). The occurrence and toxicity of a red tide caused by Noctiluca scintillans (Macartney) Ehrenb., in the coastal waters of Hong Kong. Environmental Research, 4(6), 544-557. doi:10.1016/0013-9351(71)90015-6
  45. Nachtigall, W. (2002). Bionik. Berlin [u.a.]: Springer.
  46. O. Alabi, A., Tampier, M., & Bibeau, E. (2009). Current Technology, Suitability & Barriers to Implementation: The British Columbia Innovation Council. (pp. 9 -11). British Columbia.
  47. Oh, I., Oh, J., & Lee, K. (1993). Assessment of biodegradability of polymeric microspheresin vivo: Poly (DL-lactic acid), poly (L-lactic acid) and poly (DL-lactide- co-glycolide) microspheres. Archives Of Pharmacal Research, 16(4), 312-317. doi:10.1007/bf02977522
  48. Podola, B., Nowack, E., & Melkonian, M. (2004). The use of multiple-strain algal sensor chips for the detection and identification of volatile organic compounds. Biosensors And Bioelectronics, 19(10), 1253-1260. doi:10.1016/j.bios.2003.11.015
  49. Qiu, F. (2013). Algae Architecture (M.Sc). TU Delft.
  50. Ratcliffe, J., Hunneyball, I., Smith, A., Wilson, C., & Davis, S. (1984). Preparation and evaluation of biodegradable polymeric systems for the intra-articular delivery of drugs. Journal Of Pharmacy And Pharmacology, 36(7), 431-436. doi:10.1111/j.2042- 7158.1984.tb04419.x
  51. Schuurman, W., Levett, P., Pot, M., van Weeren, P., Dhert, W., & Hutmacher, D. et al. (2013). Gelatin-Methacrylamide Hydrogels as Potential Biomaterials for Fabrication of Tissue-Engineered Cartilage Constructs. Macromol. Biosci., 13(5), 551-561. doi:10.1002/mabi.201200471
  52. Serwer, P. (1983). Agarose gels: Properties and use for electrophoresis. Electrophoresis, 4(6), 375-382. doi:10.1002/elps.1150040602
  53. Shay, E. (1993). Diesel fuel from vegetable oils: Status and opportunities. Biomass And Bioenergy, 4(4), 227-242. doi:10.1016/0961-9534(93)90080-n Shitanda, I., Takada, K., Sakai, Y., & Tatsuma, T. (2005). Compact amperometric algal biosensors for the evaluation of water toxicity. Analytica Chimica Acta, 530(2), 191-197. doi:10.1016/j.aca.2004.09.073
  54. Skardal, A., Zhang, J., & Prestwich, G. (2010). Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials, 31(24), 6173-6181. doi:10.1016/j.biomaterials.2010.04.045
  55. Tada, K., Pithakpol, S. and Montani, S. (2004) Seasonal variation in the abundance of Noctiluca scintillans in the Seto Inland Sea, Japan. Plank. Biol. Ecol., 51, 7-14.
  56. Tissue Engineering. (2012). Bionanomaterials, 13(1-4). doi:10.1515/bnm-2012-0015
  57. Uyenco, F. (1965). Studies on Some Lichenized Trentepohlia Associated in Lichen Thalli with Coenogonium. Transactions Of The American Microscopical Society, 84(1), 1. doi:10.2307/3224534
  58. Van Vlierberghe, S., Dubruel, P., Lippens, E., Masschaele, B., Van Hoorebeke, L., & Cornelissen, M. et al. (2008). Toward modulating the architecture of hydrogel scaffolds: curtains versus channels. J Mater Sci: Mater Med, 19(4), 1459-1466. doi:10.1007/s10856-008-3375-8
  59. Wikipedia,. (2015). Chitosan. Retrieved 14 July 2015, from https://en.wikipedia.org/wiki/Chitosan
  60. Xiao, R., Chen, R., Zhang, H., & Li, H. (2011). Microalgae Scenedesmus quadricauda Grown in Digested Wastewater for Simultaneous CO2 Fixation and Nutrient Removal. Journal Of Biobased Materials And Bioenergy, 5, 234-240. BIBLIOGRAPHY
  61. Adamatzky, Andrew et al. 'On Creativity Of Slime Mould'. International Journal of General Systems 42.5 (2013): 441-457. Web.
  62. Alter, Lloyd. 'Panasonic Eco-House On Display In Tokyo'. TreeHugger. N.p., 2006. Web. 29 Apr. 2015.
  63. Alter, Lloyd. 'Sky Farm Proposed For Downtown Toronto'. TreeHugger. N.p., 2007. Web. 29 Apr. 2015.
  64. Aristotle., and John Warrington. Metaphysics. London: Dent, 1956. Print.
  65. Armstrong, Rachel. 'Designer Materials For Architecture'. Architectural Design 78.6 (2008): 86-89. Web.
  66. Armstrong, Rachel. 'Designing With Protocells: Applications Of A Novel Technical Platform'. Life 4.3 (2014): 457-490. Web.
  67. Armstrong, Rachel. 'Is There Something Beyond ‘Outside Of The Box’?'. Architectural Design 81.6 (2011): 130-133. Web.
  68. Armstrong, Rachel. 'Space Is An Ecology For Living In'. Architectural Design 84.6 (2014): 128-133. Web.
  69. Armstrong, Rachel. 'Systems Architecture: A New Model For Sustainability And The Built Environment Using Nanotechnology, Biotechnology, Information Technology, And Cognitive Science With Living Technology'. Artificial Life 16.1 (2010): 73-87.
  70. Web. Armstrong, Rachel. The Gray's Anatomy. London: Serpent's Tail, 2001. Print.
  71. Ball, Philip. Nature's Patterns. Oxford: Oxford University Press, 2009. Print.
  72. Ball, Philip, and Dirk Helbing. Why Society Is A Complex Matter. Berlin: Springer, 2012. Print.
  73. Beesley, Philip, Omar Khan, and Michael Stacey. ACADIA 2013. Print.
  74. Beesley, Philip. Responsive Architectures. [Cambridge, Ont.]: Riverside Architectural Press, 2006. Print.
  75. D.M. Rayner, Alan. Inclusionality And Sustainability -Attuning With The Currency Of Natural Energy Flow And How This Contrasts With Abstract Economic Rationality. 2010. Print.
  76. Hanczyc, M. M. 'Metabolism And Motility In Prebiotic Structures'. Philosophical Transactions of the Royal Society B: Biological Sciences 366.1580 (2011): 2885- 2893. Web.
  77. Harding, Stephan. Animate Earth. White River Junction, Vt.: Chelsea Green Pub. Co., 2006. Print.
  78. Ingber, Donald E. Tensegrity. Esquire, 2002. Print.
  79. Ingber, Donald E. The Architecture Of Life. Scientific American, 1998. Print.
  80. Johnson, Steven. Emergence. New York: Scribner, 2001. Print.
  81. Kac, Eduardo. Signs Of Life. Cambridge, Mass.: MIT Press, 2007. Print.
  82. Kerrigan, Christian. 'The 200 Year Continuum'. Leonardo 42.4 (2009): 314-323.
  83. Web. Lefebvre, Henri. The Production Of Space. Oxford, OX, UK: Blackwell, 1991. Print.
  84. Margulis, Lynn, and Dorion Sagan. What Is Life?. New York: Simon & Schuster, 1995. Print.
  85. McGilchrist, Iain. The Master And His Emissary. New Haven: Yale University Press, 2009. Print.
  86. McCullough, Malcolm. Digital Ground. Cambridge, Mass.: MIT Press, 2004. Print.
  87. Oosterhuis, Kas. Architecture Goes Wild. Rotterdam: 010 Publishers, 2002. Print.
  88. Oosterhuis, Kas. Towards A New Kind Of Building. Rotterdam: NAi, 2011. Print.
  89. Ottino, J.M. 'Complex Systems'. AIChe Journal 49 (2) (2003): 292 -299. Print.
  90. Penny, Simon. The Virtualisation Of Art Practice : Body Knowledge And The Engineering World View. CAA Art Journal, 1997. Print.
  91. Scully, Vincent. Architecture. New York: St. Martin's Press, 1991. Print.
  92. Semper, Gottfried, Harry Francis Mallgrave, and Michael Robinson. Style In The Technical And Tectonic Arts, Or, Practical Aesthetics. Los Angeles: Getty Research Institute, 2004. Print.
  93. Spiller, Neil. Future City: Experiment And Utopia In Architecture. New York: Thames and Hudson, 2006. Print.
  94. Spiller, Neil. 'Radical Experimentation As Research: AVATAR'. Architectural Design 78.4 (2008): 130-131. Web.
  95. St Arroman, Claude. 'Movement And Flow At The Boundary'. Journal of Tranfigural Mathematics (2011): n. pag. Print.
  96. Thackara, John. In The Bubble. Cambridge, Mass.: MIT Press, 2005. Print.
  97. Tisdall, Caroline. Joseph Beuys. [London]: Violette Editions, 1998. Print.
  98. Villard), Davertige (Denis, and Carrol F. Coates. 'Idem/Idem'. Callaloo 15.3 (1992): 633. Web.
  99. Warner, Bernard, and Herbert A. Simon. 'The Sciences Of The Artificial'. OR 20.4 (1969): 509. Web.
  100. Wikipedia,. 'Chameleon'. N.p., 2015. Web. 8 Apr. 2015.
  101. Zulas, Alejandro. 'Adaptable Architecture -A Computational Exploration Into Responsive Design Systems'. Master of Science in Architecture Studies. Massachusetts Institute of Technology, 1999. Print.