P._J._Hilton,_U._Stammbach_auth._A_Course_in_Homological_Algebra.pdf
Abstract
ISBN 0-387-90033-0 Springer-Verlag New York Heidelberg Berlin (soft cover) ISBN 0-387-90032-2 Springer-Verlag New York Heidelberg Berlin (hard cover) ISBN 3-540-90033-0 Springer-Verlag Berlin Heidelberg New York (soft cover) This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. © by Springer-Verlag New York
References (65)
- Modules
- Carry out a similar exercise to the one above, assuming a" is an isomorphism.
- 5. Use the universal property of the direct sum to show that (A1(BA2)®A3 = A, O(A2(DA3)
- Show that Zm9Z.=Zm if and only if m and n are mutually prime.
- 7. Show that the following statements about the exact sequence (11.5) Hom(A1, A2) is understood to be endowed with a G-module structure by diagonal action. Lemma 11.9. Let A be a left G-module. Then the G-modules A' = Hom(ZG, A) and X= Hom(ZG, A0) are isomorphic. Proof. We define rp : A'-A" by ((p(a)) (x) = x -t (a(x)), x e G. a : ZG --+A.
- We verify that (p is a homomorphism of G-modules: ((P (Y " a)) (x) = x -1((Y -a) (x)) = x -1(Y (a(Y -l x))) , (y WOO) (x)=((Pa)(Y-lx)=(x-'y)(a(Y 1x)), x,yeG.
- The map W : A"-+A' defined by (tpa) (x) = x(a(x)) is easily checked to be a two-sided inverse of tp. 0 Corollary 11.10. A' = Hom(ZG, A) is relative injective. 0 Exercises: 11.1. Show that the functor -®ZG is left-adjoint to the functor B-B0.
- 2. Prove that a G-module P is relative projective if and only if it has the following property: If A>-.B-»P is any short exact sequence of G-modules which splits as a sequence of abelian groups, then it also splits as a sequence of G-modules. (See also Exercise IX.1.7.)
- Characterise relative injective G-modules by a property dual to the property stated in Exercise 11.2.
- Show (by induction) that H"(G, A), may be computed by using a relative injective resolution of A and H"(G, B) by using a relative projective resolution of B. 11.5. Show that d defined by d(x)=x®x, xeG is a homomor- phism of augmented algebras over Z. hence ZG is a Hopf algebra.
- 6. Show that the tensor algebra TV over the K-vectorspace V is a Hopf algebra, d being defined by d (v) = v ®1 + 1®v, v e V.
- 7. Show that with the conventions (11.3) and (11.5) Hom(-, -) and -® - are bifunctors to the category of G-modules.
- Let A1..... A. be G-modules. Let A, ® ... ®A" be given a G-module structure by diagonal action, i.e., x(a1® ... (9a") = xa1®xa2 ® ... ®xa", x e G, ai a A,, i =1, ..., n. Show that ZG®A1® ... ®A,, ZG®A10® ... ®A"o.
- Reduction Theorems Theorem 12.1. For n >_ 2 we have H"(G. B)Hn_1(G,B(9 IG).
- H"(G. A) = H" -1(G. Hom (I G, A)),
- B ® 1 G and Hom (I G, A) are G-modules by diagonal action.
- Andre, M.: Methode simpliciale en algebre homologique et algebre com- mutative. Lecture notes in mathematics, Vol. 32. Berlin-Heidelberg-New York: Springer 1967.
- Bachmann,F.: Kategorische Homologietheorie and Spektralsequenzen. Bat- telle Institute, Mathematics Report No. 17, 1969.
- Baer,R.: Erweiterung von Gruppen and ihren Isomorphismen. Math. Z. 38, 375-416 (1934).
- Barr,M., Beck, J.: Seminar on triples and categorical homology theory. Lecture notes in Mathematics, Vol. 80. Berlin-Heidelberg-New York: Springer 1969.
- Buchsbaum,D.: Satellites and universal functors. Ann. Math. 71, 199-209 (1960).
- Bucur,l., Deleanu,A.: Categories and functors. London-New York: Inter- science 1968.
- Cartan, H., Eilenberg, S.: Homological algebra. Princeton, N. J.: Princeton Uni- versity Press 1956.
- Chevalley, C., Eilenberg, S.: Cohomology theory of Lie groups and Lie algebras. Trans. Amer. Math. Soc. 63, 85-124 (1948).
- Eckmann,B.: Der Cohomologie-Ring einer beliebigen Gruppe. Comment. Math. Helv. 18, 232-282 (1945-46).
- -Hilton, P.: Exact couples in an abelian category. J. Algebra 3, 38-87 (1966).
- --Commuting limits with colimits. J. Algebra 11, 116-144 (1969).
- -Schopf,A.: Ober injektive Modulen. Arch. Math. (Basel) 4, 75-78 (1953).
- Eilenberg,S., MacLane,S.: General theory of natural equivalences. Trans. Amer. Math. Soc. 58, 231-294 (1945).
- --Relations between homology and homotopy groups of spaces. Ann. Math. 46,480-509 (1945).
- --Cohomology theory in abstract groups I, II. Ann. Math. 48, 51-78, 326-341 (1947).
- -Steenrod, N. E.: Foundations of algebraic topology. Princeton, N. J.: Prin- ceton University Press 1952.
- Evens, L.: The cohomology ring of a finite group. Trans. Amer. Math. Soc. 101, 224-239 (1961).
- Freyd, P.: Abelian categories. New York: Harper and Row 1964.
- Fuchs. L.: Infinite abelian groups. London-New York: Academic Press 1970.
- Gruenberg, K.: Cohomological topics in group theory. Lecture Notes in Mathematics, Vol. 143. Berlin-Heidelberg-New York: Springer 1970.
- Hilton, P. J.: Homotopy theory and duality. New York : Gordon and Breach 1965.
- -Correspondences and exact squares. Proceedings of the conference on categorical algebra, La Jolla 1965. Berlin-Heidelberg-New York: Springer 1966.
- -Wylie,S.: Homology theory. Cambridge: University Press 1960.
- Hochschild, G.: Lie algebra kernels and cohomology. Amer. J. Math. 76. 698-716 (1954).
- -The structure of Lie groups. San Francisco: Holden Day 1965.
- Hopf, H.: Fundamentalgruppe and zweite Bettische Gruppe. Comment. Math. Helv. 14, 257-309 (1941/42).
- -Ober die Bettischen Gruppen, die zu einer beliebigen Gruppe gehoren. Comment. Math. Helv. 17, 39-79 (1944/45).
- Huppert, B.: Endliche Gruppen I. Berlin-Heidelberg-New York: Springer 1967.
- Jacobson,N.: Lie Algebras. London-New York: Interscience 1962.
- Kan,D.: Adjoint functors. Trans. Amer. Math. Soc. 87, 294-329 (1958).
- Koszul,J.-L.: Homologie et cohomologie des algebres de Lie. Bull. Soc. Math. France 78, 65-127 (1950).
- Lambek, J.: Goursat's theorem and homological algebra. Canad. Math. Bull. 7, 597-608 (1964).
- Lang, S.: Rapport sur la cohomologie des groupes. New York: Benjamin 1966.
- MacLane,S.: Homology. Berlin-Gottingen-Heidelberg: Springer 1963.
- Magnus,W., Karrass,A., Solitar,D.: Combinatorial group theory. London- New York: Interscience 1966.
- Mitchell,B.: Theory of categories. London-New York: Academic Press 1965.
- Pareigis,B.: Kategorien and Funktoren. Stuttgart: Teubner 1969.
- Schubert,H.: Kategorien I, II. Berlin-Heidelberg-New York: Springer 1970.
- Schur, I.: Ober die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen. Crelles 1127. 20-50 (1904).
- Serre,J.-P.: Cohomologie Galoisienne. Lecture Notes, Vol. 5. Berlin-Heidel- berg-New York: Springer 1965.
- -Lie algebras and Lie groups. New York: Benjamin 1965.
- Stallings.J.: A finitely presented group whose 3-dimensional integral homology is not finitely generated. Amer. J. Math. 85, 541-543 (1963).
- -Homology and central series of groups. J. Algebra 2, 170-181 (1965).
- -On torsion free groups with infinitely many ends. Ann. Math. 88, 312-334 (1968).
- Stammbach,U.: Anwendungen der Homologietheorie der Gruppen auf Zen- tralreihen and auf Invarianten von Prasentierungen. Math. Z. 94, 157-177 (1966).
- -Homological methods in group varieties. Comment. Math. Helv. 45, 287-298 (1970).
- Swan, R. G.: Groups of cohomological dimension one. J. Algebra 12, 585-610 (1969).
- Weiss,E.: Cohomology of groups. New York: Academic Press 1969. The following texts are at the level appropriate to a beginning student in homological algebra: Jans, J. P.: Rings and homology. New York, Chicago, San Francisco, Toronto, London: Holt, Rinehart and Winston 1964.
- Northcott, D. G.: An introduction to homological algebra. Cambridge 1960.