High-temperature fusion of a multi-electron leviton
Abstract
The state of electrons injected onto the surface of the Fermi sea depends on temperature. The state is pure at zero temperature and is mixed at finite temperature. In the case of a single-electron injection, such a transformation can be detected as a decrease in shot noise with increasing temperature. In the case of a multi-electron injection, the situation is more subtle. The mixedness helps the development of quantum-mechanical exchange correlations between injected electrons, even if such correlations are absent at zero temperature. These correlations enhance the shot noise, what in part counteracts the reduction of noise with temperature. Moreover, at sufficiently high temperatures, the correlation contribution to noise predominates over the contribution of individual particles. As a result, in the system of N electrons, the apparent charge (which is revealed via the shot noise) is changed from e at zero temperature to N e at high temperatures. It looks like the exchange correlations glue up electrons into one particle of total charge and energy. This point of view is supported by both charge noise and heat noise. Interestingly, in the macroscopic limit, N → ∞, the correlation contribution completely suppresses the effect of temperature on noise.
References (90)
- M. D. Blumenthal, B. Kaestner, L. Li, S. P. Giblin, T. J. B. M. Janssen, M. Pepper, D. Anderson, G. A. C. Jones, and D. A. Ritchie, Gigahertz quantized charge pumping, Nature Physics 3, 343 (2007). 1
- G. Fève, A. Mahé, J.-M. Berroir, T. Kontos, B. Plaçais, D. C. Glattli, A. Cavanna, B. Etienne, and Y. Jin, An on- demand coherent single-electron source, Science 316, 1169 (2007). 1
- B. Kaestner, V. Kashcheyevs, S. Amakawa, M. D. Blu- menthal, L. Li, T. J. B. M. Janssen, G. Hein, K. Pierz, T. Weimann, U. Siegner, and H. W. Schumacher, Single- parameter nonadiabatic quantized charge pumping, Phys- ical Review B 77, 153301 (2008).
- A. Fujiwara, K. Nishiguchi, and Y. Ono, Nanoam- pere charge pump by single-electron ratchet using silicon nanowire metal-oxide-semiconductor field-effect transistor, Applied Physics Letters 92, 042102 (2008).
- B. Roche, R. P. Riwar, B. Voisin, E. Dupont-Ferrier, R. Wacquez, M. Vinet, M. Sanquer, J. Splettstoesser, and X. Jehl, A two-atom electron pump, Nature Communications 4, 1581 (2013).
- J. Dubois, T. Jullien, F. Portier, P. Roche, A. Cavanna, Y. Jin, W. Wegscheider, P. Roulleau, and D. C. Glattli, Minimal-excitation states for electron quantum optics us- ing levitons, Nature 502, 659 (2013). 1, 5
- A. Rossi, T. Tanttu, K. Y. Tan, I. Iisakka, R. Zhao, K. W. Chan, G. C. Tettamanzi, S. Rogge, A. S. Dzurak, and M. Möttönen, An accurate single-electron pump based on a highly tunable silicon quantum dot, Nano Letters 14, 3405-3411 (2014).
- G. C. Tettamanzi, R. Wacquez, S. Rogge, Charge pumping through a single donor atom, New Journal of Physics 16, 063036 (2014).
- S. d'Hollosy, M. Jung, A. Baumgartner, V. A. Guzenko, M. H. Madsen, J. Nygård, and C. Schönenberger, Giga- hertz Quantized Charge Pumping in Bottom-Gate-Defined InAs Nanowire Quantum Dots, Nano Letters 15, 4585- 4590 (2015).
- D. M. T. van Zanten, D. M. Basko, I. M. Khaymovich, J. P. Pekola, H. Courtois, and C. B. Winkelmann, Single Quantum Level Electron Turnstile, Physical Review Let- ters 116, 166801 (2016). 1
- C. Leicht, P, Mirovsky, B. Kaestner, F. Hohls, V. Kashcheyevs, E. V. Kurganova, U. Zeitler, T. Weimann, K. Pierz, and H. W. Schumacher, Generation of energy se- lective excitations in quantum Hall edge states, Semicond. Sci. Technol. 26, 055010 (2011). 1
- E. Bocquillon, V. Freulon, J.-M. Berroir, P. Degiovanni, B. Plaçais, A. Cavanna, Y. Jin, and G. Fève, Coherence and Indistinguishability of Single Electrons Emitted by Inde- pendent Sources, Science 339, 1054 (2013). 1
- J. D. Fletcher, P. See, H. Howe, M. Pepper, S. P. Giblin, J. P. Griffiths, G. A. C. Jones, I. Farrer, D. A. Ritchie, T. J. B. M. Janssen, and M. Kataoka, Clock-Controlled Emission of Single-Electron Wave Packets in a Solid-State Circuit, Physical Review Letters 111, 216807 (2013). 1
- T. Jullien, P. Roulleau, B. Roche, A. Cavanna, Y. Jin, and D. C. Glattli, Quantum tomography of an electron, Nature 514, 603-607 (2014).
- V. Freulon, A. Marguerite, J.-M. Berroir, B. Plaçais, A. Cavanna, Y. Jin, G. Fève, Hong-Ou-Mandel experiment for temporal investigation of single-electron fractionaliza- tion, Nature Communications 6, 6854 (5) (2015).
- J. Waldie, P. See, V. Kashcheyevs, J. P. Griffiths, I. Farrer, G. A. C. Jones, D. A. Ritchie, T. J. B. M. Janssen, and M. Kataoka, Measurement and control of electron wave packets from a single-electron source, Physical Review B 92, 125305 (2015). 1
- M. Vanević, J. Gabelli, W. Belzig, and B. Reulet, Electron and electron-hole quasiparticle states in a driven quantum contact, Physical Review B 93, 041416 (2016).
- S. Ryu, M. Kataoka, and H. S. Sim, Ultrafast Emission and Detection of a Single-Electron Gaussian Wave Packet: A Theoretical Study, Physical Review Letters 117, 146802 (2016).
- A. Marguerite, B. Roussel, R. Bisognin, C. Cabart, M. Ku- mar, J.-M. Berroir, E. Bocquillon, B. Plaçais, A. Cavanna, U. Gennser, Y. Jin, P. Degiovanni, and G. Fève, Extract- ing single electron wavefunctions from a quantum charge current, arXiv:1710.11181, 1
- I. Neder, N. Ofek, Y. Chung, M. Heiblum, D. Mahalu, and V. Umansky, Interference between two indistinguishable electrons from independent sources, Nature 448, 333-337 (2007). 1
- E. Bocquillon, V. Freulon, F. D. Parmentier, J.-M. Berroir, B. Plaçais, C. Wahl, J. Rech, T. Jonckheere, T. Martin, Ch. Grenier, D. Ferraro, P. Degiovanni, and G. Fève, Elec- tron quantum optics in ballistic chiral conductors, Ann. Phys. 526, 1-30 (2014). 1
- A. Marguerite, E. Bocquillon, J.-M. Berroir, B. Plaçais, A. Cavanna, Y. Jin, P. Degiovanni, and G. Fève, Two-particle interferometry in quantum Hall edge channels. Phys. Stat. Sol. (b) 254, 1600618 (2016).
- D. C. Glattli and P. S. Roulleau, Levitons for electron quantum optics. Phys. Stat. Sol. (b) 254, 1600650 (2016). 1
- L. Fricke, M. Wulf, B. Kaestner, V. Kashcheyevs, J. Timo- shenko, P. Nazarov, F. Hohls, Ph. Mirovsky, B. Mackrodt, R. Dolata, Th. Weimann, K. Pierz, and H. W. Schumacher, Counting statistics for electron capture in a dynamic quan- tum dot. Physical Review Letters 110, 126803 (2012). 1
- N. Ubbelohde, F. Hohls, V. Kashcheyevs, T. Wagner, L. Fricke, B. Kästner, K. Pierz, H. W. Schumacher, and R. J. Haug, Partitioning of on-demand electron pairs, Nature Nanotechnology 10, 46-49 (2014). 1
- D. C. Glattli, P. Roulleau, Hanbury-Brown Twiss noise correlation with time controlled quasi-particles in ballistic quantum conductors, Physica E: Low-dimensional Systems and Nanostructures 76, 216-222 (2016). 1, 2
- M. Büttiker, H. Thomas, A. Prêtre, Mesoscopic capacitors, Physics Letters A 180, 364 (1993). 1
- J. Gabelli, G. Fève, J.-M. Berroir, B. Plaçais, A. Cavanna, B. Etienne, and Y. Jin, Violation of Kirchhoff's laws for a coherent RC circuit, Science 313, 499 (2006). 1
- J. Splettstoesser, S. Ol'khovskaya, M. Moskalets, and M. Büttiker, Electron counting with a two-particle emitter, Physical Review B, 78, 205110 (2008). 1
- M. Moskalets, G. Haack, and M. Büttiker, Single-electron source: Adiabatic versus nonadiabatic emission, Physical Review B 87, 125429 (2013).
- M. Moskalets, Two-electron state from the Floquet scat- tering matrix perspective, Physical Review B 89, 045402 (2014). 1
- S. Juergens, J. Splettstoesser, and M. Moskalets, Single- particle interference versus two-particle collisions, EPL (Europhysics Letters) 96, 37011 (2011). 1
- A. Inhofer and D. Bercioux, Proposal for an on-demand source of polarized electrons into the edges of a topological insulator, Physical Review B 88, 235412 (2013). 1
- P. P. Hofer and M. Büttiker, Emission of time-bin entan- gled particles into helical edge states, Physical Review B 88, 241308 (2013). 1
- Y. Sherkunov, J. Zhang, N. d'Ambrumenil, and B. Muzykantskii, Optimal electron entangler and single- electron source at low temperatures, Physical Review B 80, 041313 (2009). 1
- D. Dasenbrook and C. Flindt, Dynamical generation and detection of entanglement in neutral leviton pairs, Physical Review B 92, 161412 (2015). 1
- L. S. Levitov, H. Lee, and G. B. Lesovik, Electron counting statistics and coherent states of electric current, J. Math. Phys. 37, 4845 (1996). 1
- D. A. Ivanov, H. W. Lee, and L. S. Levitov, Coherent states of alternating current, Physical Review B 56, 6839 (1997).
- J. Keeling, I. Klich, and L. S. Levitov, Minimal Excitation States of Electrons in One-Dimensional Wires, Physical Review Letters 97, 116403 (2006). 1, 4
- J. Dubois, T. Jullien, C. Grenier, P. Degiovanni, P. Roul- leau, and D. C. Glattli, Integer and fractional charge Lorentzian voltage pulses analyzed in the framework of photon-assisted shot noise, Physical Review B 88, 085301 (2013). 1
- C. Grenier, J. Dubois, T. Jullien, P. Roulleau, D. C. Glat- tli, and P. Degiovanni, Fractionalization of minimal exci- tations in integer quantum Hall edge channels, Physical Review B 88, 085302 (2013). 1, 3, 4
- J. Rech, D. Ferraro, T. Jonckheere, L. Vannucci, M. Sas- setti, and T. Martin, Minimal Excitations in the Frac- tional Quantum Hall Regime, Physical Review Letters 118, 076801 (2017).
- L. Vannucci, F. Ronetti, J. Rech, D. Ferraro, T. Jon- ckheere, T. Martin, and M. Sassetti, Minimal excitation states for heat transport in driven quantum hall systems, Physical Review B 95, 245415 (2017).
- M. Misiorny, G. Fève, and J. Splettstoesser, Shaping charge excitations in chiral edge states with a time- dependent gate voltage, arXiv:1711.00119.
- F. Ronetti, L. Vannucci, D. Ferraro, Th. Jonckheere, J. Rech, Th. Martin, and M. Sassetti, Crystalliza- tion of levitons in the fractional quantum Hall regime, arXiv:1712.07094. 1
- D. C. Glattli and P. Roulleau, Pseudo-random bi- nary injection of levitons for electron quantum optics, arXiv:1702.00499. 1
- M. Büttiker, Scattering theory of thermal and excess noise in open conductors, Physical Review Letters 65, 2901 (1990). 1
- P. Samuelsson, E. V. Sukhorukov, and M. Büttiker, Two- particle Aharonov-Bohm effect and entanglement in the electronic Hanbury Brown-Twiss setup, Physical Review Letters 92, 026805 (2004). 1
- M. Büttiker, Scattering theory of current and intensity noise correlations in conductors and wave guides, Physi- cal Review B 46, 12485 (1992). 1
- R. Liu, B. Odom, Y. Yamamoto, and S. Tarucha, Quantum interference in electron collision, Nature 391, 263 (1998). 1
- R. Hanbury Brown and R. Q. Twiss, A Test of a New Type of Stellar Interferometer on Sirius, Nature 178, 1046-1048 (1956). 1
- M. Henny, S. Oberholzer, C. Strunk, T. Heinzel, K. En- sslin, M. Holland, C. Schönenberger, The Fermionic Han- bury Brown and Twiss Experiment, Science 284, 296 (1999). 1
- W. D. Oliver, J. Kim, R. C. Liu, and Y. Yamamoto, Han- bury Brown and Twiss-type experiment with electrons, Science 284, 299 (1999).
- S. Oberholzer, M. Henny, C. Strunk, C. Schönenberger, T. Heinzel, K. Ensslin, and M. Holland, The Hanbury Brown and Twiss experiment with fermions, Physica E: Low- dimensional Systems and Nanostructures 6, 314 (2000).
- I. Neder, N. Ofek, Y. Chung, M. Heiblum, D. Mahalu, and V. Umansky, Interference between two indistinguish- able electrons from independent sources, Nature 448, 333 (2007). 1
- E. Bocquillon, F. D. Parmentier, C. Grenier, J.-M. Berroir, P. Degiovanni, D. C. Glattli, B. Plaçais, A. Cavanna, Y. Jin, and G. Fève, Electron Quantum Optics: Partition- ing Electrons One by One, Physical Review Letters 108, 196803 (2012). 2, 5
- I. V. Krive, E. Bogachek, A. Scherbakov, and U. Landman, Heat current fluctuations in quantum wires, Physical Re- view B 64, 233304 (2001). 2
- M. Kindermann and S. Pilgram, Statistics of heat trans- fer in mesoscopic circuits, Physical Review B 69, 155334 (2004).
- D. V. Averin and J. P. Pekola, Violation of the Fluctuation-Dissipation Theorem in Time-Dependent Mesoscopic Heat Transport, Physical Review Letters 104, 220601 (2010).
- D. Sergi, Energy transport and fluctuations in small con- ductors, Physical Review B 83, 033401 (2011).
- F. Zhan, S. Denisov, and P. Hänggi, Electronic heat trans- port across a molecular wire: Power spectrum of heat fluc- tuations, Physical Review B 84, 195117 (2011).
- R. Sánchez, B. Sothmann, A. N. Jordan, and M. Büttiker, Correlations of heat and charge currents in quantum-dot thermoelectric engines, New Journal of Physics 15, 125001 (2013).
- A. Crépieux and F. Michelini, Mixed, charge and heat noises in thermoelectric nanosystems, J. Phys.: Condens. Matter 27, 015302 (2014). 2
- F. Battista, F. Haupt, and J. Splettstoesser, Energy and power fluctuations in ac-driven coherent conductors, Phys- ical Review B 90, 085418 (2014). 2, 4
- M. H. Pedersen and M. Büttiker, Scattering theory of photon-assisted electron transport, Physical Review B 58, 12993 (1998). 2
- M. Moskalets and M. Büttiker, Floquet scattering theory for current and heat noise in large amplitude adiabatic pumps, Physical Review B 70, 245305 (2004). 2
- Y. P. Li, D. C. Tsui, J. J. Heremans, and J. A. Simmons, Low-frequency noise in transport through quantum point contacts, Appl. Phys. Lett. 57, 774 (1990). 2
- F. Liefrink, A. J. Scholten, C. Dekker, R. Eppenga, H. van Houten and C. T. Foxon, Low-frequency noise of quantum point contacts in the ballistic and quantum Hall regime, Physica B 175, 213 (1991).
- M. Reznikov, M. Heiblum, H. Shtrikman, and D. Ma- halu, Temporal correlation of electrons: Suppression of shot noise in a ballistic quantum point contact, Physical Review Letters 75, 3340 (1995).
- Y. M. Blanter and M. Büttiker, Shot noise in mesoscopic conductors, Physics Reports 336, 1-166 (2000). 2
- C. Grenier, R. Hervé, G. Fève, and P. Degiovanni, Electron quantum optics in quantum hall edge channels. Mod. Phys. Lett. B 25, 1053 (2011). 2
- C. Grenier, R. Hervé, E. Bocquillon, F. D. Parmentier, B. Plaçais, J.-M. Berroir, G. Fève, and P. Degiovanni, Single- electron quantum tomography in quantum Hall edge chan- nels, New Journal of Physics 13, 093007 (2011).
- G. Haack, M. Moskalets, and M. Büttiker, Glauber co- herence of single-electron sources, Physical Review B 87, 201302 (2013). 2
- M. Moskalets and G. Haack, Single-electron coherence: fi- nite temperature versus pure dephasing, Physica E: Low- dimensional Systems and Nanostructures 75, 358-369 (2016). 2
- M. Moskalets, Single-particle shot noise at nonzero tem- perature, Physical Review B 96, 165423 (2017). 2, 4
- M. Moskalets, First-order correlation function of a stream of single-electron wave packets, Physical Review B 91, 195431 (2015). 3, 4
- M. Moskalets, Single-particle emission at finite tempera- tures, Low Temperature Physics 43, 865 (2017). 3, 4
- J. Keeling, A. V. Shytov, and L. S. Levitov, Coherent Par- ticle Transfer in an On-Demand Single-Electron Source, Physical Review Letters 101, 196404 (2008). 3
- M. Moskalets and M. Büttiker, Heat production and cur- rent noise for single-and double-cavity quantum capaci- tors, Physical Review B 80, 081302(R) (2009). 4
- L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Ob- servation of the e/3 Fractionally Charged Laughlin Quasi- particle, Physical Review Letters 79, 2526 (1997). 5
- R. de-Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bunin, and D. Mahalu, Direct observation of a frac- tional charge, Nature 389, 162 (1997). 5
- F. Battista, M. Moskalets, M. Albert, and P. Samuelsson, Quantum Heat Fluctuations of Single-Particle Sources, Physical Review Letters 110, 126602 (2013). 5, 6
- M. F. Ludovico, J. S. Lim, M. Moskalets, L. Arrachea, and D. Sánchez, Dynamical energy transfer in ac-driven quantum systems. Physical Review B. 89, 161306 (2014). 5
- M. Moskalets and G. Haack, Heat and charge transport measurements to access single-electron quantum charac- teristics, Phys. Stat. Sol. (b) 254, 1600616 (2016). 5, 6
- C. Jarzynski, Nonequilibrium equality for free energy dif- ferences, Physical Review Letters 78, 2690 (1997). 6
- G. E. Crooks, Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differ- ences, Phys. Rev. E 60, 2721 (1999).
- G. Bunin, L. D'Alessio, Y. Kafri, and A. Polkovnikov, Uni- versal energy fluctuations in thermally isolated driven sys- tems, Nature Physics 7, 913 (2011).
- D. V. Averin and J. P. Pekola, Statistics of the dissipated energy in driven single-electron, Europhys. Lett. 96, 67004 (2011).
- G. N. Bochkov and Y. E. Kuzovlev, Fluctuation- dissipation relations. Achievements and misunderstand- ings, Phys.-Usp. 56, 590 (2013).
- M. Moskalets, Floquet Scattering Matrix Theory of Heat Fluctuations in Dynamical Quantum Conductors, Physical Review Letters 112, 206801 (2014). 6