An introduction to $BV$ functions in Wiener spaces
2012, Eprint Arxiv 1212 5926
Abstract
We present the foundations of the theory of functions of bounded variation and sets of finite perimeter in abstract Wiener spaces.
Key takeaways
AI
AI
- This paper establishes foundational theory for functions of bounded variation (BV) in abstract Wiener spaces.
- Malliavin calculus connects BV functions to stochastic differential equations and various mathematical fields.
- The authors present key equivalences for BV functions, critical for understanding their properties in infinite dimensions.
- Applications of BV theory include geometric analysis and probabilistic interpretations in stochastic processes.
- The text serves as an introductory resource for students and researchers in variational methods and infinite dimensional analysis.
References (54)
- H. Airault, P. Malliavin, Intégration géométrique sur l'espace de Wiener, Bull. Sci. Math. 112(1) (1988), 3-52.
- L. Ambrosio, G. Da Prato, D. Pallara, BV functions in a Hilbert space with respect to a Gaussian measure, Rend. Acc. Lincei 21, (2010), 405-414.
- L. Ambrosio, G. Da Prato, B. Goldys, D. Pallara, Bounded variation with respect to a log- concave measure, Comm. P.D.E., to appear.
- L. Ambrosio, A. Figalli, On flows associated to Sobolev vector fields in Wiener spaces: an approach à la Di Perna-Lions, J. Funct Anal. 256, (2009), 179-214.
- L. Ambrosio, A. Figalli, Surface measure and convergence of the Ornstein-Uhlenbeck semi- group in Wiener spaces, Ann. Fac. Sci. Toulouse Math., 20, (2011) 407-438.
- L. Ambrosio, A. Figalli, E. Runa, On sets of finite perimeter in Wiener spaces: reduced boundary and convergence to halfspaces, Preprint (2012).
- L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, 2000.
- L. Ambrosio, S. Maniglia, M. Miranda Jr, D. Pallara, Towards a theory of BV functions in abstract Wiener spaces, In: "Evolution Equations: a special issue of Physica D", 239 (2010), 1458-1469.
- L. Ambrosio, S. Maniglia, M. Miranda Jr, D. Pallara, BV functions in abstract Wiener spaces, J. Funct. Anal., 258 (2010), 785-813.
- L. Ambrosio, M. Miranda Jr, D. Pallara, Sets with finite perimeter in Wiener spaces, perime- ter measure and boundary rectifiability, Discrete Contin. Dyn. Syst., 28 (2010), 591-606.
- D. Bakry, M. Ledoux, Lévy-Gromov's isoperimetric inequality for an infinite dimensional diffusion generator, Invent. Math., 123 (1996), 259-281.
- S.G. Bobkov, An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space, Ann. Probab., 25 (1997), 206-214.
- V. I. Bogachev, Gaussian Measures, Mathematical Surveys and Monographs 62, American Mathematical Society, 1998.
- V. I. Bogachev, Measure Theory, Springer, 2007.
- V. I. Bogachev, Differentiable measures and the Malliavin calculus, Mathematical Surveys and Monographs 164, American Mathematical Society, 2010.
- H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North Holland, 1973.
- E.A. Carlen and C. Kerce, On the cases of equality in Bobkov's inequality and Gaussian rearrangement, Calc. Var., 13 (2001), 1-18.
- V. Caselles, A. Lunardi, M. Miranda jr, M. Novaga, Perimeter of sublevel sets in infinite dimensional spaces, Adv. Calc. Var., 5 (2012), 59-76.
- V. Caselles, M. Miranda jr, M. Novaga, Total Variation and Cheeger sets in Gauss space, J. Funct. Anal., 259 (2010), 1491-1516.
- A. Cesaroni, M. Novaga, E. Valdinoci, A symmetry result for the Ornstein-Uhlenbeck oper- ator, Discrete Contin. Dyn. Syst. A, to appear.
- A. Chambolle, M. Goldman, M. Novaga, Representation, relaxation and convexity for varia- tional problems in Wiener spaces, J. Math. Pures Appl., to appear.
- G. Da Prato, B. Goldys, J. Zabczyk, Ornstein-Uhlenbeck semigroups in open sets of Hilbert spaces, C. R. Math. Acad. Sci. Paris 325 (1997) 433-438.
- G. Da Prato, A. Lunardi, On the Dirichlet semigroup for Ornstein-Uhlenbeck operators in subsets of Hilbert spaces, J. Funct. Anal. 259 (2010) 2642-2672.
- E. De Giorgi, Su una teoria generale della misura (r -1)-dimensionale in uno spazio ad r dimensioni, Ann. Mat. Pura Appl. (4), 36 (1954), 191-213. Also in: Ennio De Giorgi: Selected Papers, (L. Ambrosio, G. Dal Maso, M. Forti, M. Miranda, S. Spagnolo eds.), Springer, 2006, 79-99. English translation, Ibid., 58-78.
- E. De Giorgi, Su alcune generalizzazioni della nozione di perimetro, in: Equazioni differenziali e calcolo delle variazioni (Pisa, 1992), G. Buttazzo, A. Marino, M.V.K. Murthy eds, Quaderni U.M.I. 39, Pitagora, 1995, 237-250.
- A. Ehrhard, Symétrisation dans l'espace de Gauss, Math. Scand., 53 (1983), 281-301.
- L.C. Evans, R.F. Gariepy, Lecture notes on measure theory and fine properties of functions, CRC Press, 1992.
- H. Federer, Geometric measure theory, Springer, 1969.
- D. Feyel, A. de la Pradelle, Hausdorff measures on the Wiener space, Potential Anal., 1 (1992), 177-189.
- A. Friedman, Stochastic differential equations and applications, Academic Press, 1975/76 and Dover, 2006.
- M. Fukushima, On semimartingale characterization of functionals of symmetric Markov pro- cesses, Electron. J. Probab., 4 (1999), 1-32.
- M. Fukushima, BV functions and distorted Ornstein-Uhlenbeck processes over the abstract Wiener space, J. Funct. Anal., 174 (2000), 227-249.
- M. Fukushima, M. Hino, On the space of BV functions and a Related Stochastic Calculus in Infinite Dimensions. J. Funct. Anal., 183 (2001), 245-268.
- M. Fukushima, Y. Oshima, M. Takeda, Dirichlet forms and symmetric Markov processes, de Gruyter Studies in Mathematics 19, de Gruyter, 1994.
- M. Goldman, M. Novaga, Approximation and relaxation of perimeter in the Wiener space, Annales IHP -Analyse Nonlineaire, 29 (2012), 525-544.
- Y. Hariya, Integration by parts formulae for Wiener measures restricted to subsets in R d , J. Funct. Anal. 239 (2006) 594-610.
- M. Hino, Integral representation of linear functionals on vector lattices and its application to BV functions on Wiener space, in: Stochastic analysis and related topics in Kyoto in honour of Kiyoshi Itô, Advanced Studies in Pure Mathematics, 41 (2004), 121-140.
- M. Hino, Sets of finite perimeter and the Hausdorff-Gauss measure on the Wiener space, J. Funct. Anal., 258 (2010), 1656-1681.
- M.Hino and H.Uchida, Reflecting Ornstein-Uhlenbeck processes on pinned path spaces, Proceedings of RIMS Workshop on Stochastic Analysis and Applications, 111-128, RIMS Kokyuroku Bessatsu, B6, Kyoto, 2008.
- M. Ledoux, Isoperimetry and Gaussian analysis, in: Lectures on Probability Theory and Statistics, Saint Flour, 1994, Lecture Notes in Mathematics 1648, Springer, 1996, 165-294.
- Z. M. Ma and M. Röckner, Introduction to the theory of (non-symmetric) Dirichlet forms, Springer, 1992.
- F. Maggi, Sets of finite perimeter and geometric variational problems: an introduction to geometric measure theory, Cambridge Studies in Advanced Mathematics 135, Cambridge University Press, 2012.
- P. Malliavin, Stochastic calculus of variation and hypoelliptic operators, Diff. Eq. Res. Inst. Math. Sci., Kyoto Univ., Kyoto 1976, Wiley, New York, (1978), 195-263.
- P. Malliavin, Stochastic analysis, Grundlehren der Mathematischen Wissenschaften 313, Springer, 1997.
- D. Preiss, Differentiability of Lipschitz functions in Banach spaces, J. Funct. Anal. 91, (1990), 312-345.
- D. Preiss, Gaussian measures and the density theorem. Comment. Math. Univ. Carolin., 22 (1981), 181-193.
- V.N. Sudakov and B.S. Tsirel'son, Extremal properties of half-spaces for spherically invari- ant measures. Problems in the theory of probability distributions, II, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)., 41, (1974), 14-24.
- D. Trevisan, BV -capacities on Wiener spaces and regularity of the maximum of the Wiener process, preprint.
- N. N. Vakhania, V. I. Tarieladze, S. A. Chobnyan, Probability distribution in Banach spaces, Kluwer, 1987.
- A. I. Vol'pert, The space BV and quasilinear equations, Math. USSR Sbornik 2 (1967), 225-267.
- A. D. Wentzell, A Course in the Theory of Stochastic Processes, McGraw-Hill, New York, 1981.
- L. Zambotti, Integration by parts formulae on convex sets of paths and applications to SPDEs with reflection, Probab. Theory Related Fields 123 (2002) 579-600.
- MM, Dipartimento di Matematica e Informatica, Università di Ferrara, via Machi- avelli 35, 44121 Ferrara, Italy, michele.miranda@unife.it, MN, Dipartimento di Matemat- ica, Università di Padova, via Trieste 63, 35121 Padova, Italy, novaga@math.unipd.it, DP, Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, P.O.B. 193, 73100
- Lecce, Italy, diego.pallara@unisalento.it