Academia.eduAcademia.edu

Outline

Robot task planning and explanation in open and uncertain worlds

Abstract

A long-standing goal of AI is to enable robots to plan in the face of uncertain and incomplete information, and to handle task failure intelligently. This paper shows how to achieve this. There are two central ideas. The first idea is to organize the robot's knowledge into three layers: instance knowledge at the bottom, commonsense knowledge above that, and diagnostic knowledge on top. Knowledge in a layer above can be used to modify knowledge in the layer(s) below. The second idea is that the robot should represent not just how its actions change the world, but also what it knows or believes. There are two types of knowledge effects the robot's actions can have: epistemic effects (I believe X because I saw it) and assumptions (I'll assume X to be true). By combining the knowledge layers with the models of knowledge effects, we can simultaneously solve several problems in robotics: (i) task planning and execution under uncertainty; (ii) task planning and execution in open worlds; (iii) explaining task failure; (iv) verifying those explanations. The paper describes how the ideas are implemented in a three-layer architecture on a mobile robot platform. The robot implementation was evaluated in five different experiments on object search, mapping, and room categorization.

References (56)

  1. Aydemir, A., Göbelbecker, M., Pronobis, A., Sjöö, K., Jensfelt, P., Sep. 2011. Plan-based object search and exploration using semantic spatial knowledge in the real world. In: Proceedings of the European Conference on Mobile Robotics (ECMR'11). Örebro, Sweden, pp. 13-18.
  2. Aydemir, A., Pronobis, A., Gobelbecker, M., Jensfelt, P., 2013. Active visual object search in unknown environments using uncertain seman- tics. IEEE Transactions on Robotics 29 (4), 986-1002.
  3. Aydemir, A., Sjöö, K., Folkesson, J., Jensfelt, P., May 2011. Search in the real world: Active visual object search based on spatial relations. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA 2011). Shanghai, China, pp. 2818-2824.
  4. Bäckström, C., Nebel, B., 1995. Complexity results for SAS + planning. Computational Intelligence 11 (4), 625-655.
  5. Brenner, M., Nebel, B., 2009. Continual planning and acting in dynamic multiagent environments. Autonomous Agents and Multi-Agent Systems 19, 297-331, 10.1007/s10458-009-9081-1.
  6. Christensen, H. I., Kruijff, G.-J. M., Wyatt, J. L. (Eds.), 2010. Cognitive Systems. Vol. 8 of Cognitive Systems Monographs. Springer, Berlin.
  7. Ekvall, S., Kragic, D., Jensfelt, P., 2007. Object detection and mapping for service robot tasks. Robotica 25 (2), 175-187.
  8. Galindo, C., Fernández-Madrigal, J.-A., González, J., Saffiotti, A., 2008. Robot task planning using semantic maps. Robotics and Autonomous Systems 56 (11), 955-966.
  9. Gardenfors, P., 1986. Belief revisions and the Ramsey test for conditionals. Philosophical Review 95, 81-93.
  10. Gerevini, A. E., Haslum, P., Long, D., Saetti, A., Dimopoulos, Y., 2009. Deterministic planning in the Fifth International Planning Competi- tion: PDDL3 and experimental evaluation of the planners. Artificial Intelligence 173 (5-6), 619-668.
  11. Göbelbecker, M., Gretton, C., Dearden, R., 2011. A switching planner for combined task and observation planning. In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence. San Francisco, USA, pp. 964-970.
  12. González-Banos, H., Latombe, J., 2001. A randomized art-gallery algorithm for sensor placement. In: SCG '01: Proceedings of the Seven- teenth Annual Symposium on Computational Geometry. ACM, New York, USA, pp. 232-240.
  13. Hanheide, M., Gretton, C., Dearden, R. W., Hawes, N. A., Wyatt, J. L., Pronobis, A., Aydemir, A., Göbelbecker, M., Zender, H., 2011. Exploiting probabilistic knowledge under uncertain sensing for efficient robot behaviours. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI-11). Barcelona, Spain, pp. 2442-2449.
  14. Hanheide, M., Hawes, N., Wyatt, J. L., Göbelbecker, M., Brenner, M., Sjöö, K., Aydemir, A., Jensfelt, P., Zender, H., Kruijff, G.-J. M., 2010. A framework for goal generation and management. In: Proceedings of the AAAI Workshop on Goal-Directed Autonomy, WS-4 AAAI 2010. Atlanta, Georgia.
  15. Hawes, N., Hanheide, M., Hargreaves, J., Page, B., Zender, H., Jensfelt, P., 2011. Home alone: Autonomous extension and correction of spatial representations. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA 2011). Shanghai, China, pp. 3907-3914.
  16. Hawes, N., Wyatt, J. L., 2010. Engineering intelligent information-processing systems with CAST. Advances in Engineering Informatics 24 (1), 27-39.
  17. Hawes, N., Wyatt, J. L., Sridharan, M., Jacobsson, H., Dearden, R., Sloman, A., Kruijff, G.-J., 2010. Architecture and representations. In: Cognitive Systems. Springer, Berlin, pp. 51-93.
  18. Helmert, M., 2006. The fast downward planning system. Journal of Artificial Intelligence Research 26, 191-246.
  19. Jacobsson, H., Hawes, N., Kruijff, G.-J., Wyatt, J., 2008. Crossmodal content binding in information-processing architectures. In: Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction -HRI '08. Amsterdam, Netherlands, pp. 81-88.
  20. Jain, D., Mosenlechner, L., Beetz, M., May 2009. Equipping robot control programs with first-order probabilistic reasoning capabilities. In: In Proceedings of 2009 IEEE International Conference on Robotics and Automation (ICRA 2009). IEEE, pp. 3626-3631.
  21. Janíček, M., 2012. Abductive reasoning for continual dialogue understanding. In: Slavkovik, M., Lassiter, D. (Eds.), New Directions in Logic, Language, and Computation. Springer, pp. 16-31.
  22. Kaplow, R., Atrash, A., Pineau, J., 2010. Variable resolution decomposition for robotic navigation under a pomdp framework. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA 2010). Anchorage, USA, pp. 369-376.
  23. Klenk, M., Molineaux, M., Aha, D. W., 2013. Goal-driven autonomy for responding to unexpected events in strategy simulations. Computa- tional Intelligence 29 (2), 187-206.
  24. Kollar, T., Roy, N., 2009. Utilizing object-object and object-scene context when planning to find things. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation (ICRA'09). Kobe, Japan, pp. 4116-4121.
  25. Kraft, D., Bas ¸eski, E., Popović, M., Batog, A. M., Kjaer-Nielsen, A., Krüger, N., Petrick, R., Geib, C., Pugeault, N., Steedman, M., Asfour, T., Dillmann, R., Kalkan, S., Wörgötter, F., Hommel, B., Detry, R., Piater, J., 2008. Exploration and planning in a three-level cognitive architecture. In: International Conference on Cognitive Systems (CogSys 2008). Karlsruhe, Germany, pp. 71-78.
  26. Kunze, L., Beetz, M., Saito, M., Azuma, H., Okada, K., 2012. Searching objects in large-scale indoor environments: A decision-theoretic approach. In: Proceedings of the 2012 IEEE International Conference on Robotics and Automation (ICRA 2012). St. Paul, USA, pp. 4385- 4390.
  27. Lewis, D., 1973. Counterfactuals. Harvard University Press.
  28. Lienhart, R., Maydt, J., 2002. An extended set of Haar-like features for rapid object detection. In: Proceedings of the 2002 International Conference on Image Processing (ICIP 2002). Vol. 1. Rochester, New York, pp. 900-903.
  29. Martinez-Cantin, R., de Freitas, N., Brochu, E., Castellanos, J., Doucet, A., 2009. A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot. Autonomous Robots 27 (2), 93-103.
  30. Mitchell, T. M., Keller, R. M., Kedar-Cabelli, S. T., 1986. Explanation-based generalization: A unifying view. Machine Learning 1 (1), 47-80.
  31. Mooij, J. M., Aug. 2010. libDAI: A free and open source C++ library for discrete approximate inference in graphical models. Journal of Machine Learning Research 11, 2169-2173.
  32. Peter Bonasso, R., James Firby, R., Gat, E., Kortenkamp, D., Miller, D. P., Slack, M. G., Apr. 1997. Experiences with an architecture for intelligent, reactive agents. Journal of Experimental & Theoretical Artificial Intelligence 9 (2-3), 237-256.
  33. Petrick, R. P. A., Bacchus, F., 2002. A knowledge-based approach to planning with incomplete information and sensing. In: Proceedings of the Sixth International Conference on Artificial Intelligence Planning Systems 2002. Toulouse, France, pp. 212-222.
  34. Pineau, J., Montemerlo, M., Pollack, M., Roy, N., Thrun, S., 2003. Towards robotic assistants in nursing homes: Challenges and results. Robotics and Autonomous Systems 42 (3), 271-281.
  35. Pronobis, A., Jensfelt, P., 2012. Large-scale semantic mapping and reasoning with heterogeneous modalities. In: Proceedings of the 2012 IEEE International Conference on Robotics and Automation (ICRA'12). St. Paul, USA, pp. 3515-3522.
  36. Pronobis, A., Mozos, O. M., Caputo, B., Jensfelt, P., February 2010. Multi-modal semantic place classification. Int. J. Robot. Res. 29 (2-3), 298-320.
  37. Pronobis, A., Sjöö, K., Aydemir, A., Bishop, A. N., Jensfelt, P., 2009. A framework for robust cognitive spatial mapping. In: Proceedings of the 14th International Conference on Advanced Robotics (ICAR'09). Munich, Germany, pp. 1-8.
  38. Pronobis, A., Sjöö, K., Aydemir, A., Bishop, A. N., Jensfelt, P., 2010. Representing spatial knowledge in mobile cognitive systems. In: 11th International Conference on Intelligent Autonomous Systems (IAS-11). Ottawa, Canada, pp. 133-142.
  39. Reiter, R., 1987. A theory of diagnosis from first principles. Artificial Intelligence 32 (1), 57-95.
  40. Richtsfeld, A., Mörwald, T., Zillich, M., Vincze, M., 2010. Taking in shape: Detection and tracking of basic 3D shapes in a robotics context. In: Proceedings of the 15th Computer Vision Winter Workshop. Nové Hrady, Czech Republic, pp. 91-98.
  41. Shanahan, M., 1989. Prediction is deduction but explanation is abduction. In: Proceedings of the 11th International Joint Conference on Artificial Intelligence (IJCAI'89). Vol. 2. Detroit, USA, pp. 1055-1060.
  42. Shanahan, M., 2005. Perception as abduction: Turning sensor data into meaningful representation. Cognitive Science 29 (1), 103-134.
  43. Simmons, R., Goodwin, R., Haigh, K. Z., Koenig, S., O'Sullivan, J., 1997. A layered architecture for office delivery robots. In: Proceedings of the First International Conference on Autonomous Agents (AGENTS '97). Marina del Rey, USA, pp. 245-252.
  44. Sjöö, K., Aydemir, A., Schlyter, D., Jensfelt, P., July 2010. Topological spatial relations for active visual search. Tech. Rep. TRITA-CSC-CV 2010:2 CVAP317, Centre for Autonomous Systems, KTH, Stockholm.
  45. Sjöö, K., Zender, H., Jensfelt, P., Kruijff, G.-J. M., Pronobis, A., Hawes, N., Brenner, M., 2010. The Explorer system. In: Christensen, H. I., Kruijff, G.-J. M., Wyatt, J. L. (Eds.), Cognitive Systems. Springer, Berlin, pp. 395-421.
  46. Skočaj, D., Kristan, M., Vrečko, A., Mahnič, M., Janíček, M., Kruijff, G.-J. M., Hanheide, M., Hawes, N., Keller, T., Zillich, M., Zhou, K., 2011. A system for interactive learning in dialogue with a tutor. In: Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011). San Francisco, USA, pp. 3387-3394.
  47. Sohrabi, S., Baier, J. A., McIlraith, S. A., 2011. Preferred explanations: Theory and generation via planning. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence. San Francisco, USA, pp. 261-267.
  48. Suh, I. H., Lim, G. H., Hwang, W., Suh, H., Choi, J.-H., Park, Y.-T., 2007. Ontology-based multi-layered robot knowledge framework (OMRKF) for robot intelligence. In: Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2007). San Diego, USA, pp. 429-436.
  49. Talamadupula, K., Benton, J., Kambhampati, S., Schermerhorn, P., Scheutz, M., December 2010. Planning for human-robot teaming in open worlds. ACM Transactions on Intelligent Systems and Technology 1, 14:1-14:24.
  50. Tenorth, M., Beetz, M., 2009. KNOWROB -knowledge processing for autonomous personal robots. In: Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009). St. Louis, USA, pp. 4261-4266.
  51. Velez, J. J., Huang, A. S., Hemann, G. A., Roy, N., Posner, I., 2012. Modelling observation correlations for active exploration and robust object detection. Journal of Artificial Intelligence Research 44, 423-453.
  52. Wyatt, J. L., Aydemir, A., Brenner, M., Hanheide, M., Hawes, N., Jensfelt, P., Kristan, M., Kruijff, G.-J. M., Lison, P., Pronobis, A., Sjöö, K., Skočaj, D., Vrečko, A., Zender, H., Zillich, M., December 2010. Self-understanding and self-extension: A systems and representational approach. IEEE Transactions on Autonomous Mental Development 2 (4), 282 -303.
  53. Younes, H. L. S., Littman, M., 2004. PPDDL 1.0: An extension to PDDL for expressing planning domains with probabilistic effects. Tech. Rep. CMU-CS-04-167, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania.
  54. Zender, H., Kruijff, G.-J. M., Kruijff-Korbayová, I., 2009. Situated resolution and generation of spatial referring expressions for robotic assistants. In: Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09). Pasadena, USA, pp. 1604-1609.
  55. Zender, H., Mozos, O. M., Jensfelt, P., Kruijff, G.-J. M., Burgard, W., 2008. Conceptual spatial representations for indoor mobile robots. Robotics and Autonomous Systems 56 (6), 493-502.
  56. Zhang, S., Sridharan, M., Wyatt, J., 2015. Integrating probabilistic graphical models and non-monotonic logical inference for robots. IEEE Transactions on Robotics 31 (3), 699-713.