Equivalence Classes of Colorings: the Topological Viewpoint
2012
Abstract
For any link and for any modulus $m$ we introduce an equivalence relation on the set of non-trivial m-colorings of the link (an m-coloring has values in Z/mZ). Given a diagram of the link, the equivalence class of a non-trivial m-coloring is formed by each assignment of colors to the arcs of the diagram that is obtained from the former coloring by a permutation of the colors in the arcs which preserves the coloring condition at each crossing. This requirement implies topological invariance of the equivalence classes. We show that for a prime modulus the number of equivalence classes depends on the modulus and on the rank of the coloring matrix (with respect to this modulus).
References (20)
- K. Brown, K. O'Neil, L. Taalman, Counting m-coloring classes of knots and links, found at http://educ.jmu.edu/ ~taalmala/PME_brown_oneil_taal.pdf
- A.-L. Breiland, L. Oesper, L. Taalman, p-coloring classes of torus knots, Missouri J. Math. Sci. 21 (2009), no. 2, 120-126
- R. Crowell, R. Fox, Introduction to knot theory, Dover Publications 2008
- M. Elhamdadi, J. MacQuarrie, R. Restrepo, Automorphism groups of quandles, J. Algebra Appl. 11 (2012), no. 1, 1250008, 9 pp.
- R. H. Fox, A quick trip through knot theory, in "Toplogy of Three-Manifolds", Prentice-Hall (1962), pp. 12-167.
- S. Jablan, R. Sazdanović , LinKnot-Knot Theory by Computer, Series on Knots and Everything 21, World Scientific Publishing Co., River Edge, NJ 2007
- D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Alg., 23 (1982), 37-65
- L. H. Kauffman, On Knots, Annals of Mathematics Studies, 115, Princeton University Press, Prince- ton, NJ 1987.
- L. H. Kauffman, Knots and physics, First Edition, Second Edition, Third Edition, Fourth Edition, Series on Knots and Everything 1, 53, World Scientific Publishing Co. Pte. Ltd., Singapore and River Edge and Hackensack, New Jersey 1991,1994,2001,2013.
- L. Kauffman, P. Lopes, On the minimum number of colors for knots, Adv. in Appl. Math. 40 (2008), no. 1, 36-53
- W. B. R. Lickorish, An introduction to knot theory, Graduate Texts in Mathematics 175, Springer Verlag, New York (1997)
- P. Lopes, Quandles at finite temperatures I, J. Knot Theory Ramifications, 12 (2003), no. 2, 159-186
- S. Matveev, Distributive groupoids in knot theory, Math. USSR Sbornik 47 (1984), no. 1, 73-83
- J. Przytycki, 3-coloring and other elementary invariants of knots, Knot Theory (War- saw, 1995), Banach Center Publ., 42, 275-295, Polish Acad. Sci. Warsaw (1998), http://arxiv.org/abs/math/0608172
- K. Reidemeister, Knotentheorie, Chelsea Pub. Co., New York (1948), Originally published in 1932 - Julius Springer, Berlin.
- D. Rolfsen, Knots and links, AMS Chelsea Publishing (2003)
- H. Seifert, Über das Geschlecht von knoten, Math. Ann. 110, (1934), 571-592
- H. J. S. Smith, On systems of linear indeterminate equations and congruences, Philos. Trans. R. Soc. Lond., 151, (1861), 293-326
- M. Wada, Group invariants of links, Topology, 31, (1992) no. 2, 399-406
- S. Winker, Quandles, knot invariants, and the n-fold branched cover, Thesis (Ph.D.), University of Illinois at Chicago, 1984, 198 pages