Academia.eduAcademia.edu

Outline

Web usage mining using rough agglomerative clustering

sites.google.com

https://doi.org/10.5220/0002553003150320

Abstract

Pradeep kumar, P. Radha Krishna Institute for Development and Research in Banking Technology, (IDRBT), 1, Castle hills, Masab Tank, Hyderabad - 500057 Email:{ pradeepkumar, prkrishna} @idrbt.ac.in ... Supriya kumar De XLRI Jamshedpur, ...

References (16)

  1. Jhoshi, A. and Krishnapuram , R., " Robust fuzzy clustering methods to support web mining, proceedings of the workshop on Data Mining and Knowledge Discovery, SIGMOD ' 98, Seattle, pp. 15/1 -15/8, June 1998.
  2. Bezdek, J, C,. Pattern recognition and fuzzy objective function algorithms, plenum Press , New York 1981.
  3. Hogo, M., Snorek, M. and Lingras, P., Temporal versus latest snapshot web usage mining using kohonen som and modified kohonen som based on the properties of rough sets theory , international journal on artificial intelligence tools, vol. 13, no. 3 (2004) 569-591.
  4. Cooley, R., Web Usage Mining: Discovery and Applications of Interesting Patterns from Web data. PhD thesis,Dept. of Computer Science, University of Minnesota, May 2000.
  5. Spiliopoulou, M. and Faulstich, L, C., WUM: A tool for web utilization analysis. In Extended version of Proc.EDBT Workshop WebDB'98, pages 184-203.
  6. Mannila, H. and Meek, C., Global partial orders from sequential data. In Proc. 6th Intl. Conf. on KnowledgeDiscovery and Data Mining (KDD2000), pages 161-168, Aug 2000.
  7. Pitkow, J. and Pirolli, P., Mining longest repeating subsequences to predict world wide web surfing. In Proc 2ndUSENIX Symposium on Internet
  8. Technologies & Systems (USITS'99), Oct 1999.
  9. Fu, Y., Sandhu, K., and Shih, M., A Generalization-Based Dash, M., Huan, L., Peter, S., KianLee, T.: Fast Hierarchical Clustering and its Validation, Data and Knowledge Engineering. 44(1) (2003) 109-138.
  10. De, S, K., Radha Krishna, P.: Mining web data using clustering technique for web personalization, Int. Jour. of Computational Intelligence and Applications, 2(3) (2002) 255-265.
  11. De, S.K., Radha Krishna, P.: Clustering web transactions using rough approximation, Fuzzy Sets and Systems (2004) (In print).
  12. Jamil, S., Jitender, S,D. : Concept Approximations Based on Rough Sets and similarity Measures, International Journal on Applied Mathematics and Computer Science,2001,Vol.11,No.3,655 -674.
  13. Pawlak, Z., Rough Sets, International Journal of Computer and Information Sciences, 11 (1982) 341- 356.
  14. Perkowitz, M., Etzioni, O.: Towards adaptive web sites: Conceptual framework and case study, Artificial Intelligence, 118 (2000) 245-275.
  15. Spiliopoulou, M.: Data mining for the web, In Principles of Data Mining and Knowledge Discovery, Second European Symposium, PKDD'99, (1999) 588-589.
  16. Manco, G., Ortale, R., and Sacca, D., Similarity-based clustering of Web transactions, Symposium on Applied Computing, Proceedings of the 2003 ACM symposium on Applied computing pp. 1212 -1216 Approach to Clustering of Web Usage Sessions, in Masand and Spiliopoulou (Eds), Web Usage Analysis and User Profiling, Lecture Notes in Artificial Intelligence, Vol. 1836, pages 21-38, Springer, 2000.