Academia.eduAcademia.edu

Outline

Predicting the aftermath of vortex breakup in rotating flow

https://doi.org/10.1017/S0022112010004945

Abstract

A method for predicting the outcome of vortex breakup in a rotating flow is introduced. The vortices dealt with here are subject to both centrifugal and barotropic instabilities. The prediction of the aftermath of the breakup relies on knowing how both centrifugal and barotropic instabilities would equilibrate separately. A theoretical model for non-linear equilibration in centrifugal instability is wedded to two-dimensional simulation of barotropic instability to predict the final vortices that emerge from the debris of the original vortex. This prediction method is tested against three-dimensional Navier-Stokes simulations. For vortices in which a rapid centrifugal instability triggers a slower barotropic instability, the method is successful both qualitatively and quantitatively. The skill of the prediction method decreases as the time scales of the two instabilities become comparable.

References (41)

  1. Aristegui, J., Sangra, P., Hernandez-Leon, S., Canton, M., Hernandez-Guerra, A. & Kerling, J. L. 1994 Island-induced eddies in the Canary Islands. Deep Sea Res. 41, 1509-1525.
  2. Barba, L. A. & Leonard, A. 2007 Emergence and evolution of tripole vortices from net circulation initial conditions. Phys. Fluids 19, 017101.
  3. Bayly, B. J. 1988 Three-dimensional centrifugal-type instabilities in inviscid two-dimensional flows. Phys. Fluids 31, 56-64.
  4. Beckers, M. & van Heijst, G. J. F. 1998 The observation of a triangular vortex in a rotating fluid. Fluid Dyn. Res. 22, 265-279.
  5. Bennetts, D. A. & Hoskins, B. J. 1979 Conditional symmetric instability: a possible explanation for frontal rainbands. Q. J. R. Meteorol. Soc. 105, 945-962.
  6. Carnevale, G. F., Briscolini, M., Kloosterziel, R. C. & Vallis, G. K. 1997 Three-dimensionally perturbed vortex tubes in a rotating flow. J. Fluid Mech. 341, 127-163.
  7. Carnevale, G. F. & Kloosterziel, R. C. 1994 Emergence and evolution of triangular vortices. J. Fluid Mech. 259, 305-331.
  8. Carton, X. J. 1992 The merger of homostrophic shielded vortices. Europhys. Lett. 18, 697-703.
  9. Carton, X. J., Fierl, G. R. & Polvani, L. M. 1989 The generation of tripoles from unstable axisymmetric isolated vortex structures. Europhys. Lett. 9, 339-344.
  10. Carton, X. J. & Legras, B. 1994 The life-cycle of tripoles in two-dimensional incompressible flows. J. Fluid Mech. 267, 53-82.
  11. Carton, X. & McWilliams, J. C. 1989 Barotropic and baroclinic instabilities of axisymmetric vortices in a quasi-geostrophic model. In Mesoscale/Synotopic Coherent Structures in Geophysical Turbulence (ed. J. C. J. Nihoul & B. M. Jamart), pp. 225-244. Elsevier.
  12. D'Asaro, E. A. 1988 Generation of submesoscale vortices: a new mechanism. J. Geophys. Res. 93, 6685-6693.
  13. Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.
  14. Dritschel, D. G. 1986 The nonlinear evolution of rotating configurations of uniform vorticity. J. Fluid Mech. 172, 157-182.
  15. Dunkerton, T. J. 1981 On the inertial instability of the equatorial middle atmosphere. J. Atmos. Sci. 38, 2354-2365.
  16. Flament, P., Lumpkin, R., Tournadre, J. & Armi, L. 2001 Vortex pairing in an unstable anticyclonic shear flow: discrete subharmonics of one pendulum day. J. Fluid Mech. 440, 401-409.
  17. Flierl, G. R. 1988 On the instability of geostrophic vortices. J. Fluid Mech. 197, 349-388.
  18. Gallaire, F. & Chomaz, J. M. 2003 Three-dimensional instability of isolated vortices. Phys. Fluids 15 (8), 2113-2126.
  19. Hayashi, H., Shiotani, M. & Gille, J. C. 1998 Vertically stacked temperature disturbances near the equatorial stratopause as seen in cryogenic limb array etalon spectrometer data. J. Geophys. Res. 103, 19469-19483.
  20. van Heijst, G. J. F. & Kloosterziel, R. C. 1989 Tripolar vortices in a rotating fluid. Nature 338, 569-571.
  21. Kloosterziel, R. C. & Carnevale, G. F. 1992 Formal stability of circular vortices. J. Fluid Mech. 242, 249-278.
  22. Kloosterziel, R. C. & Carnevale, G. F. 1999 On the evolution and saturation of instabilities of two-dimensional isolated circular vortices. J. Fluid Mech. 388, 217-257.
  23. Kloosterziel, R. C., Carnevale, G. F. & Orlandi, P. 2007a Inertial instability in rotating and stratified fluids: barotropic vortices. J. Fluid Mech. 583, 379-412.
  24. Kloosterziel, R. C. & van Heijst, G. J. F. 1991 An experimental study of unstable barotropic vortices in a rotating fluid. J. Fluid Mech. 223, 1-24.
  25. Kloosterziel, R. C., Orlandi, P. & Carnevale, G. F. 2007b Saturation of inertial instability in rotating planar shear flows. J. Fluid Mech. 583, 413-422.
  26. Knox, J. A. 1997 Possible mechanisms for clear-air turbulence in strongly anticyclonic flows. J. Atmos. Sci. 125, 1251-1259.
  27. Melander, M. V., McWilliams, J. C. & Zabusky, N. J. 1987 The axisymmetrization and vorticity- gradient intensification of an isolated two-dimensional vortex through filamentation. J. Fluid Mech. 178, 137-159.
  28. Morel, Y. G. & Carton, X. J. 1994 Multipolar vortices in two-dimensional incompressible flows. J. Fluid Mech. 267, 23-51.
  29. Orlandi, P. 2000 Fluid Flow Phenomena: A Numerical Toolkit. Kluwer.
  30. Orlandi, P. 2009 Energy spectra power laws and structures. J. Fluid Mech. 623, 353-374.
  31. Orlandi, P. & Carnevale, G. F. 1999 Evolution of isolated vortices in a rotating fluid of finite depth. J. Fluid Mech. 381, 239-269.
  32. Orlandi, P. & van Heijst, G. J. F. 1992 Numerical simulation of tripolar vortices in 2D flow. Fluid Dyn. Res. 9, 179-206.
  33. Rayleigh, Lord 1880 On the stability, or instability, of certain fluid motions. Proc. Lond. Math. Soc. 11, 57-70.
  34. Rayleigh, Lord 1916 On the dynamics of revolving fluids. Proc. R. Soc. Lond. A 93, 148-154.
  35. Richards, K. J. & Edwards, N. R. 2003 Lateral mixing in the equatorial pacific: the importance of inertial instability. Geophys. Res. Lett. 30, 1-4.
  36. Sawyer, S. J. 1947 Notes on the theory of tropical cyclones. Q. J. R. Meteorol. Soc. 73, 101-126.
  37. Smyth, W. D. & McWilliams, J. C. 1998 Instability of an axisymmetric vortex in a stably stratified, rotating environment. Theor. Comput. Fluid Dyn. 11, 305-322.
  38. Stern, M. E. 1987 Horizontal entrainment and detrainment in large-scale eddies. J. Phys. Oceanogr. 17, 1688-1695.
  39. Stone, P. H. 1966 On non-geostrophic stability. J. Atmos. Sci. 23, 390-400.
  40. Stone, P. H. 1967 An application of baroclinic stability theory to the dynamics of the Jovian atmosphere. J. Atmos. Sci. 24, 642-652.
  41. Verzicco, R. & Orlandi, P. 1996 A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123, 402-414.