Unsupervised fuzzy tournament selection
2011, Applied Mathematical Sciences
Abstract
Tournament selection has been widely used and studied in evolutionary algorithms. The size of tournament is a crucial parameter for this method. It influences on the algorithm convergence, the population diversity and the solution quality. This paper presents a new technique to adjust this parameter dynamically using fuzzy unsupervised learning. The efficiency of the proposed technique is shown by using several benchmark multimodal test functions.
References (25)
- T. Bäck. Selective pressure in evolutionary algorithms: a characteriza- tion of selection mechanisms. In Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence., Proceedings of the First IEEE Conference on (June 1994), pp. 57 -62 vol.1.
- T. Bäck. Generalized convergence models for tournament-and (mu, lambda)-selection. In ICGA (1995), L. J. Eshelman, Ed., Morgan Kauf- mann, pp. 2-8.
- T. Bäck and F. Hoffmeister. Extended selection mechanisms in genetic algorithms. In Proceedings of the Fourth International Conference on Genetic Algorithms (1991), Morgan Kaufmann, pp. 92-99.
- J. Bezdek. Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York, 1981.
- T. Blickle and L. Thiele. A comparison of selection schemes used in genetic algorithms. TIK-Report 11, TIK Institut fur Technische Infor- matik und Kommunikationsnetze, Computer Engineering and Networks Laboratory, ETH, Swiss Federal Institute of Technology, Gloriastrasse 35, 8092 Zurich, Switzerland, Dec. 1995.
- T. Blickle and L. Thiele. A mathematical analysis of tournament selection. In Proceedings of the Sixth International Conference on Ge- netic Algorithms (San Francisco, CA, 1995), L. Eshelman, Ed., Morgan Kaufmann, pp. 9-16.
- A. Bouroumi, M. Limouri, and A. Essaïd. Unsupervised fuzzy learn- ing and cluster seeking. Intelligent Data Analysis 4 (September 2000), 241-253.
- K. Deb and R. Agrawal. Simulated binary crossover for continuous search space. Complex systems 9, 2 (1995), 115-148.
- K. Deb and A. Kumar. Real-coded Genetic Algorhithms with Simu- lated Binary Crossover: Studies on Multimodel and Multiobjective Prob- lems. Complex Systems 9, 6 (1995), 431-454.
- A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary algorithms. IEEE Transations on Evolutionary Computation 3, 2 (July 1999), 124-141.
- V. Filipović, J. Kratica, D. Tošić, and I. Ljubić. Fine grained tournament selection for the simple plant location problem. In Proceed- ings of the 5th Online World Conference on Soft Computing Methods in Industrial Applications-WSC5 (2000), pp. 152-158.
- D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used in genetic algorithms. In Foundations of Genetic Algorithms (San Mateo, 1991), G. J. E. Rawlins, Ed., Morgan Kaufmann, pp. 69-93.
- P. Hancock. A comparison of selection mechanisms. In Handbook of Evolutionary Computation, T. Bäck, D. B. Fogel, and Z. Michalewicz, Eds. IOP Publishing and Oxford University Press., Bristol, UK, 1997.
- K. Hingee and M. Hutter. Equivalence of probabilistic tournament and polynomial ranking selection. In Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on (2008), pp. 564 -571.
- R. Huber and T. Schell. Mixed size tournament selection. Soft Computing -A Fusion of Foundations, Methodologies and Applications 6 (2002), 449-455. 10.1007/s00500-001-0160-8.
- B. Julstrom and D. Robinson. Simulating exponential normaliza- tion with weighted k-tournaments. In Evolutionary Computation, 2000. Proceedings of the 2000 Congress on (2000), vol. 1, pp. 227 -231 vol.1.
- Z. Michalewicz. Genetic algorithms + data structures = evolution programs (3rd ed.). Springer-Verlag, London, UK, 1996.
- B. L. Miller and D. E. Goldberg. Genetic algorithms, tournament selection, and the effects of noise. Urbana 51 (Dec. 13 1995), 61801.
- T. Motoki. Calculating the expected loss of diversity of selection schemes. Evolutionary Computation 10, 4 (2002), 397-422.
- H. Mühlenbein and D. Schlierkamp-Voosen. Predictive models for the breeder genetic algorithm, I: Continuous parameter optimization. Evolutionary Computation 1, 1 (1993), 25-49.
- R. Poli and W. B. Langdon. Backward-chaining evolutionary algo- rithms. Artificial Intelligence 170, 11 (2006), 953 -982.
- C. R. Reeves and J. E. Rowe. Genetic Algorithms: Principles and Perspectives: A Guide to GA Theory. Kluwer Academic Publishers, Nor- well, MA, USA, 2002.
- A. Sokolov and D. Whitley. Unbiased tournament selection. In Pro- ceedings of the 2005 conference on Genetic and evolutionary computation (New York, NY, USA, 2005), GECCO '05, ACM, pp. 1131-1138.
- P. Vajda, Á. E. Eiben, and W. Hordijk. Parameter control methods for selection operators in genetic algorithms. In PPSN (2008), vol. 5199 of Lecture Notes in Computer Science, Springer, pp. 620-630.
- H. Xie, M. Zhang, and P. Andreae. Another investigation on tourna- ment selection: modelling and visualisation. In GECCO '07: Proceedings of the 9th annual conference on Genetic and evolutionary computation (London, 7-11 July 2007), vol. 2, ACM Press, pp. 1468-1475.