Academia.eduAcademia.edu

Outline

Unsupervised fuzzy tournament selection

2011, Applied Mathematical Sciences

Abstract

Tournament selection has been widely used and studied in evolutionary algorithms. The size of tournament is a crucial parameter for this method. It influences on the algorithm convergence, the population diversity and the solution quality. This paper presents a new technique to adjust this parameter dynamically using fuzzy unsupervised learning. The efficiency of the proposed technique is shown by using several benchmark multimodal test functions.

References (25)

  1. T. Bäck. Selective pressure in evolutionary algorithms: a characteriza- tion of selection mechanisms. In Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence., Proceedings of the First IEEE Conference on (June 1994), pp. 57 -62 vol.1.
  2. T. Bäck. Generalized convergence models for tournament-and (mu, lambda)-selection. In ICGA (1995), L. J. Eshelman, Ed., Morgan Kauf- mann, pp. 2-8.
  3. T. Bäck and F. Hoffmeister. Extended selection mechanisms in genetic algorithms. In Proceedings of the Fourth International Conference on Genetic Algorithms (1991), Morgan Kaufmann, pp. 92-99.
  4. J. Bezdek. Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York, 1981.
  5. T. Blickle and L. Thiele. A comparison of selection schemes used in genetic algorithms. TIK-Report 11, TIK Institut fur Technische Infor- matik und Kommunikationsnetze, Computer Engineering and Networks Laboratory, ETH, Swiss Federal Institute of Technology, Gloriastrasse 35, 8092 Zurich, Switzerland, Dec. 1995.
  6. T. Blickle and L. Thiele. A mathematical analysis of tournament selection. In Proceedings of the Sixth International Conference on Ge- netic Algorithms (San Francisco, CA, 1995), L. Eshelman, Ed., Morgan Kaufmann, pp. 9-16.
  7. A. Bouroumi, M. Limouri, and A. Essaïd. Unsupervised fuzzy learn- ing and cluster seeking. Intelligent Data Analysis 4 (September 2000), 241-253.
  8. K. Deb and R. Agrawal. Simulated binary crossover for continuous search space. Complex systems 9, 2 (1995), 115-148.
  9. K. Deb and A. Kumar. Real-coded Genetic Algorhithms with Simu- lated Binary Crossover: Studies on Multimodel and Multiobjective Prob- lems. Complex Systems 9, 6 (1995), 431-454.
  10. A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary algorithms. IEEE Transations on Evolutionary Computation 3, 2 (July 1999), 124-141.
  11. V. Filipović, J. Kratica, D. Tošić, and I. Ljubić. Fine grained tournament selection for the simple plant location problem. In Proceed- ings of the 5th Online World Conference on Soft Computing Methods in Industrial Applications-WSC5 (2000), pp. 152-158.
  12. D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used in genetic algorithms. In Foundations of Genetic Algorithms (San Mateo, 1991), G. J. E. Rawlins, Ed., Morgan Kaufmann, pp. 69-93.
  13. P. Hancock. A comparison of selection mechanisms. In Handbook of Evolutionary Computation, T. Bäck, D. B. Fogel, and Z. Michalewicz, Eds. IOP Publishing and Oxford University Press., Bristol, UK, 1997.
  14. K. Hingee and M. Hutter. Equivalence of probabilistic tournament and polynomial ranking selection. In Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on (2008), pp. 564 -571.
  15. R. Huber and T. Schell. Mixed size tournament selection. Soft Computing -A Fusion of Foundations, Methodologies and Applications 6 (2002), 449-455. 10.1007/s00500-001-0160-8.
  16. B. Julstrom and D. Robinson. Simulating exponential normaliza- tion with weighted k-tournaments. In Evolutionary Computation, 2000. Proceedings of the 2000 Congress on (2000), vol. 1, pp. 227 -231 vol.1.
  17. Z. Michalewicz. Genetic algorithms + data structures = evolution programs (3rd ed.). Springer-Verlag, London, UK, 1996.
  18. B. L. Miller and D. E. Goldberg. Genetic algorithms, tournament selection, and the effects of noise. Urbana 51 (Dec. 13 1995), 61801.
  19. T. Motoki. Calculating the expected loss of diversity of selection schemes. Evolutionary Computation 10, 4 (2002), 397-422.
  20. H. Mühlenbein and D. Schlierkamp-Voosen. Predictive models for the breeder genetic algorithm, I: Continuous parameter optimization. Evolutionary Computation 1, 1 (1993), 25-49.
  21. R. Poli and W. B. Langdon. Backward-chaining evolutionary algo- rithms. Artificial Intelligence 170, 11 (2006), 953 -982.
  22. C. R. Reeves and J. E. Rowe. Genetic Algorithms: Principles and Perspectives: A Guide to GA Theory. Kluwer Academic Publishers, Nor- well, MA, USA, 2002.
  23. A. Sokolov and D. Whitley. Unbiased tournament selection. In Pro- ceedings of the 2005 conference on Genetic and evolutionary computation (New York, NY, USA, 2005), GECCO '05, ACM, pp. 1131-1138.
  24. P. Vajda, Á. E. Eiben, and W. Hordijk. Parameter control methods for selection operators in genetic algorithms. In PPSN (2008), vol. 5199 of Lecture Notes in Computer Science, Springer, pp. 620-630.
  25. H. Xie, M. Zhang, and P. Andreae. Another investigation on tourna- ment selection: modelling and visualisation. In GECCO '07: Proceedings of the 9th annual conference on Genetic and evolutionary computation (London, 7-11 July 2007), vol. 2, ACM Press, pp. 1468-1475.