Academia.eduAcademia.edu

Outline

The Complexity of Permutive Cellular Automata

Journal of cellular automata

Abstract

This paper studies cellular automata in two aspects: Ergodic and topological behavior. For ergodic aspect, the formulae of measure-theoretic entropy, topological entropy and topological pressure are given in closed forms and Parry measure is demonstrated to be an equilibrium measure for some potential function. For topological aspect, an example is examined to show that the exhibition of snap-back repellers for a cellular automaton infers Li-Yorke chaos. In addition, bipermutive cellular automata are optimized for the exhibition of snap-back repellers in permutive cellular automata whenever two-sided shift space is considered.

References (37)

  1. S. Ulam, Random process and transformations, Proc. Int. Congress of Math. 2 (1952) 264-275.
  2. J. von Neumann, Theory of self-reproducing automata, Univ. of Illinois Press, Urbana, 1966.
  3. J. M. Greenberg, S. P. Hastings, Spatial patterns for discrete models of diffusion in excitable media, SIAM J. Appl. Math. 34 (1978) 515-523.
  4. G. Bub, A. Shrier, L. Glass, Spiral Wave Generation in Heterogeneous Excitable Media, Phys. Rev. Lett. 88 (2002) 058101.
  5. Y. B. Chernyak, A. B. Feldman, R. J. Cohen, Correspondence between discrete and continuous models of excitable media: Trigger waves, Phys. Rev. E 55 (1997) 3125-3233.
  6. A. B. Feldman, Y. B. Chernyak, R. J. Cohen, Wave-front propagation in a discrete model of excitable media, Phys. Rev. E 57 (1998) 7025-7040.
  7. J. Hardy, O. de Pazzis, Y. Pomeau, Molecular dynamics of a classical lattice gas: transport prop- erties and time correlation functions, Phys. Rev. A 13 (1976) 1949-1960.
  8. M. Gardner, Wheels, life and other mathematical amusements, W. H. Freeman and Company, 1983.
  9. J. M. Greenberg, B. D. Hassard, S. P. Hastings, Pattern Formation and Periodic Structure in Systems Modeled By Reaction-Diffusion Equations, Bull. Amer. Math. Soc. 84 (1978) 1296-1327.
  10. J. M. Greenberg, C. Greene, S. P. Hastings, Acombinatorial problem arising in the study of reaction- diffusion equations, SIAM J. Algebraic Discrete Methods 1 (1980) 34-42.
  11. D. Richardson, Tessellation with Local Transformations, J. Compuut. System Sci. 6 (1972) 373V388.
  12. A. R. Smith III, Simple Computational Universal Spaces, J. Assoc. Comput. Mach. 18 (1971) 339V353.
  13. G. Y. Vichniac, Boolean Derivatives on Cellular Automata, Phys. D 45 (1990) 63V74.
  14. J. R. Weimar, J. J. Tyson, L. T. Watson, Third generation cellular automaton for modeling excitable media, Phys. D 55 (1992) 328-339.
  15. S. Wolfram, Statistical mechanics of cellular automata, Rev. Modern Physics 55 (1983) 601-644.
  16. G. A. Hedlund, Endomorphisms and automorphisms of full shift dynamical system, Math. Systems Theory 3 (1969) 320-375.
  17. S. Wolfram, Computation theory of cellular automata, Comm. Math. Phys. 96 (1984) 15-57.
  18. S. Wolfram, Twenty problems in the theory of cellular automata, Phys. Scripta 9 (1985) 170-172.
  19. G. Cattaneo, M. Finelli, L. Margara, Investigating topological chaos by elementary cellular au- tomata dynamics, Theoret. Comput. Sci. 244 (2000) 219-241.
  20. B. Codenotti, L. Margara, Transitive Cellular Automata are Sensitive, Amer. Math. Monthly 103 (1996) 58V62.
  21. P. Favati, G. Lotti, L. Margara, Additive one-dimensional cellular automata are chaotic according to Devaney's definition of chaos, Theor. Comput. Sci. 174 (1997) 157-170.
  22. L. P. Hurd, J. Kari, K. Culik, The topological entropy of cellular automata is uncomputable, Ergodic Theory Dynam. Systems 82 (1992) 255-265.
  23. M. D'amico, G. Manzini, L. Margara, On computing the entropy of cellular automata, Theor. Comput. Sci. 290 (2003) 1629V1646.
  24. T. Ward, Additive cellular automata and volume growth, Entropy 2 (2000) 142-167.
  25. M. A. Shereshevsky, Ergodic properties of certain surjective cellular automata, Monatsh. Math. 114 (1992) 305-316.
  26. D. A. Lind, Application of ergodic theory and sofic systems to cellular automata, Physica D 10 (1984) 36-44.
  27. M. Sablik, Measure rigidity for algebraic bipermutive cellular automata, Ergodic Theory Dynam. Systems 27 (2007) 1965-1990.
  28. T.-Y. Li, J. A. Yorke, Period three implies chaos, Am. Math. Monthly 82 (1975) 985-992.
  29. F. R. Marotto, Snap-back repellers imply chaos in R n , J. Math. Anal. Appl. 63 (1978) 199-223.
  30. F. R. Marotto, On redefining a snap-back repeller, Chaos Solitons Fractals 25 (2005) 25-28.
  31. C. B. García, Chaos and topological entropy in dimension n > 1, Ergodic Theory Dynam. Systems 6 (1986) 163-165.
  32. F. Blanchard, E. Glasner, S. Kolyada, A. Maass, On Li-Yorke pairs, J. Reine Angew. Math. 547 (2002) 51-68.
  33. P. Walters, An introduction to ergodic theory, Springer-Verlag New York, 1982.
  34. F. Fagnani, L. Margara, Expansivity, permutivity, and chaos for cellular automata, Theory Comput. Systems 31 (1998) 663-677.
  35. M. Pollicott, M. Yuri, Dynamical systems and ergodic theory, Cambridge University Press, 1998.
  36. S. Wolfram, A new kind of science, Wolfram Media, Champaign Illinois, USA, 2002.
  37. S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Springer-Verlag, Berlin, NY, 1990.