Academia.eduAcademia.edu

Outline

Representation of complex probabilities

1997

https://doi.org/10.1063/1.531906

Abstract

Let a "complex probability" be a normalizable complex distribution P (x) defined on R D . A real and positive probability distribution p(z), defined on the complex plane C D , is said to be a positive representation of P (x) if Q(x) P = Q(z) p , where Q(x) is any polynomial in R D and Q(z) its analytical extension on C D . In this paper it is shown that every complex probability admits a real representation and a constructive method is given. Among other results, explicit positive representations, in any number of dimensions, are given for any complex distribution of the form Gaussian times polynomial, for any complex distributions with support at one point and for any periodic Gaussian times polynomial.

References (17)

  1. P. Ramond, "Field theory: a modern primer", (Addison Wesley. 1990).
  2. J. Glimm and A. Jaffe, "Path integral approach to quantum physics", (Springer Verlag, 1994).
  3. K. Osterwalder and R. Schrader, Comm. Math. Phys. 31, 83 (1973); ibid. 42, 281 (1974).
  4. M. Fukugita and I. Niuya, Phys. Lett. B132, 374 (1983).
  5. G. Bhanot, R. Dashen, N. Seiberg and H. Levine, Phys. Rev. Lett. 53, 519 (1984).
  6. J. Ambjørn, M. Flensburg and C. Peterson, Phys. Lett. B159, 335 (1985).
  7. J. Ambjørn and S.-K. Yang, Nucl. Phys. B275 [FS17], 18 (1986).
  8. J.R. Klauder and S. Lee, Phys. Rev. D45, 2101 (1992).
  9. J.R. Klauder, J. Phys. A16, L317 (1983).
  10. G. Parisi, Phys. Lett. B131, 393 (1983);
  11. G. Parisi and Y-S. Wu, Sci. Sin. 24, 483 (1981).
  12. J. Ambjørn, M. Flensburg and C. Peterson, Nucl. Phys. B275, 375 (1986).
  13. J. Flower, S.W. Otto and S. Callahan, Phys. Rev. D34, 598 (1986).
  14. L.L. Salcedo, Phys. Lett. B305, 125 (1993).
  15. S. Lee, Nucl. Phys. B413, 827 (1994).
  16. K. Fujimura, K. Okano, L. Schülke, K. Yamagishi and B. Zheng, Nucl. Phys. B424, 675 (1994).
  17. K. Okano, L. Schülke and B. Zheng, Phys. Lett B258, 421 (1991).