Renormalizing the renormalization group pathologies
2001, Physics Reports-review Section of Physics Letters
https://doi.org/10.1016/S0370-1573(00)00134-4Abstract
We review the status of the “pathologies” of the Renormalization Group (RG) encountered when one tries to define rigorously the RG transformation as a map between Hamiltonians. We explain their origin and clarify their status by relating them to the Griffiths’ singularities appearing in disordered systems; moreover, we suggest that the best way to avoid those pathologies is to use the contour representation rather than the spin representation for lattice spin models at low temperatures. Finally, we outline how to implement the RG in the contour representation.
References (93)
- T. Balaban, Renormalization Group approach to lattice gauge "eld theories, Commun. Math. Phys. 109 (1987) 249}301; 116 (1988) 1}22.
- T. Balaban, A low temperature expansion in classical N-vector models, Commun. Math. Phys. 167 (1995) 103}154.
- G. Benfatto, E. Marinari, E. Olivieri, Some numerical results on the block spin transformation for the 2d Ising model at the critical point, J. Stat. Phys. 78 (1995) 731}757.
- G. Benfatto, G. Gallavotti, in: Renormalization Group, Physics Notes, Princeton University Press, Princeton, 1995.
- L. Bertini, E. Cirillo, E. Olivieri, Renormalization-group transformations under strong mixing conditions: Gibsianness and convergence of renormalized interactions, J. Stat. Phys. 97 (1999) 831}915.
- C. Borgs, J. Imbrie, A uni"ed approach to phase diagrams in "eld theory and statistical mechanics, Commun. Math. Phys. 123 (1989) 305}328.
- J. Bricmont, A. Kupiainen, Phase transition in the 3d random "eld Ising model, Commun. Math. Phys. 116 (1988) 539}572.
- J. Bricmont, A. Kupiainen, Randoms walks in asymmetric random environments, Commun. Math. Phys. 142 (1991) 345}420.
- J. Bricmont, A. Kupiainen, G. Lin, Renormalization group and asymptotics of solutions of nonlinear parabolic equations, Commun. Pure Appl. Math. 47 (1994) 893}922.
- J. Bricmont, A. Kupiainen, Renormalizing partial di!erential equations, in: V. Rivasseau (Ed.), Constructive Physics, Proceedings, Palaiseau, France, 1994, Lecture Notes in Physics, Springer, Berlin, 1995, pp. 83}115.
- J. Bricmont, A. Kupiainen, R. Lefevere, Renormalization group pathologies and the de"nition of Gibbs states, Commun. Math. Phys. 194 (1998) 359}388.
- J. Bricmont, J. Slawny, Phase transitions for systems with a "nite number of dominant ground states, J. Stat. Phys. 54 (1989) 89}161.
- D. Brydges, J. Dimmock, T. Hurd, A non-Gaussian "xed point for in 4! dimensions, Commun. Math. Phys. 198 (1998) 111}156.
- C. de Calan, P.A. Feria da Veiga, J. Magnen, R. SeH neH or, Constructing the three dimensional Gross}Neveu model with a large number of #avor components, Phys. Rev. Lett. 66 (1991) 3233}3236.
- C. Cammarota, The large block spin interaction, Il Nuovo Cimento 96B (1986) 1}16.
- M. Cassandro, G. Gallavotti, The Lavoisier law and the critical point, Il Nuovo Cimento 25B (1975) 695}705.
- E. Cirillo, E. Olivieri, Renormalization-group at criticality and complete analyticity of constrained models: a numerical study, J. Stat. Phys. 86 (1997) 1117}1151.
- R.L. Dobrushin, Gibbs states describing a coexistence of phases for the three-dimensional Ising model, Theoret. Prob. Appl. 17 (1972) 582}600.
- R.L. Dobrushin, Lecture given at the Workshop Probability and Physics, Renkum, Holland, 28 August}1 September, 1995.
- R.L. Dobrushin, S.B. Shlosman, Non-Gibbsian States and their Gibbs description, Commun. Math. Phys. 200 (1999) 125}179.
- C. Domb, M.S. Green (Eds.), Phase Transitions and Critical Phenomena, Vol. 6, Academic Press, New York, 1976.
- A.C.D. van Enter, Ill-de"ned block-spin transformations at arbitrarily high temperatures, J. Stat. Phys. 83 (1996) 761}765.
- A.C.D. van Enter, R. FernaH ndez, A.D. Sokal, Renormalization in the vicinity of "rst-order phase transitions: what can and cannot go wrong, Phys. Rev. Lett. 66 (1991) 3253}3256.
- A.C.D. van Enter, R. FernaH ndez, A.D. Sokal, Regularity properties and pathologies of position-space renormaliz- ation-group transformations: scope and limitations of Gibbsian theory, J. Stat. Phys. 72 (1993) 879}1167.
- A.C.D. van Enter, R. FernaH ndez, R. KoteckyH , Pathological behavior of renormalization group maps at high "elds and above the transition temperature, J. Stat. Phys. 79 (1995) 969}992.
- A.C.D. van Enter, J. LoK rinczi, Robustness of the non-Gibbsian property: some examples, J. Phys. A Math. Gen. 29 (1996) 2465}2473.
- A.C.D. van Enter, S. Shlosman, (Almost) Gibbsian description of the sign "elds of SOS "elds, J. Stat. Phys. 92 (1998) 353}367.
- M. Feigenbaum, Quantitative universality for a class of nonlinear transformations, J. Stat. Phys. 19 (1978) 25}52.
- M. Feigenbaum, The universal metric properties of nonlinear transformations, J. Stat. Phys. 21 (1979) 669}706.
- J. Feldman, J. Magnen, V. Rivasseau, R. SeH neH or, Construction of infrared by a phase space expansion, Commun.
- Math. Phys. 109 (1987) 437}480.
- J. Feldman, J. Magnen, V. Rivasseau, R. SeH neH or, A renormalizable "eld theory: the massive Gross}Neveu model in two dimensions, Commun. Math. Phys. 103 (1986) 67}103.
- R. FernaH ndez, C.-Ed. P"ster, Global speci"cations and non-quasilocality of projections of Gibbs measures, Ann. Prob. 25 (1997) 1284}1315.
- D.S. Fisher, J. FroK hlich, T. Spencer, The Ising model in a random magnetic "eld, J. Stat. Phys. 34 (1984) 863.
- M.E. Fisher, Renormalization Group theory: its basis and formulation in statistical physics, Rev. Mod. Phys. 70 (1998) 653}681.
- G. Gallavotti, H. Knops, Block spins interactions in the Ising model, Commun. Math. Phys. 36 (1974) 171}184.
- G. Gallavotti, Boundary conditions and correlation functions in the -dimensional Ising model at low temperature, Commun. Math. Phys. 23 (1971) 275}284.
- G. Gallavotti, A. Martin-LoK f, Block spins distributions for short range attractive Ising models, Il Nuovo Cimento 36 (1974) 1}16.
- K. Gawe7 dzki, R. KoteckyH , A. Kupiainen, Coarse graining approach to "rst order phase transitions, J. Stat. Phys. 47 (1987) 701}724.
- K. Gawe7 dzki, A. Kupiainen, Massless lattice theory: a non-perturbative control of a renormalizable model, Phys. Rev. Lett. 54 (1985) 92}95.
- K. Gawe7 dzki, A. Kupiainen, Gross}Neveu model through convergent perturbation expansions, Commun. Math. Phys. 102 (1985) 1}30.
- K. Gawe7 dzki, A. Kupiainen, Exact renormalization for the Gross}Neveu model of quantum "elds, Phys. Rev. Lett. 54 (1985) 2191}2194.
- K. Gawe7 dzki, A. Kupiainen, Renormalizing the non-renormalizable, Phys. Rev. Lett. 55 (1985) 363}367.
- K. Gawe7 dzki, A. Kupiainen, Renormalization of a non-renormalizable quantum "eld theory, Nucl. Phys. B262 (1985) 33}48.
- K. Gawe7 dzki, A. Kupiainen, Massless lattice theory: rigorous control of a renormalizable asymptotically free model, Commun. Math. Phys. 99 (1985) 197}252.
- H.-O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter Studies in Mathematics, Vol. 9, Walter de Gruyter, Berlin, New York, 1988.
- N. Goldenfeld, O. Martin, Y. Oono, Intermediate asymptotics and renormalization group theory, J. Sci. Comput. 4 (1989) 355}372; N. Goldenfeld, O. Martin, Y. Oono, F. Liu, Anomalous dimensions and the renormalization group in a nonlinear di!usion process, Phys. Rev. Lett. 64 (1990) 1361}1364: N. Goldenfeld, O. Martin, Y. Oono, Asymptotics of partial di!erential equations and the renormalization group, in: H. Segur, S. Tanveer, H. Levine (Eds.), Proceedings of the NATO ARW on Asymptotics Beyond all Orders, Plenum Press, New York, 1991;
- N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group, Frontiers in Physics, Vol. 85, Addison-Wesley, Reading, MA, 1992; L.-Y. Chen, N. Goldenfeld, Y. Oono, Renormalization group theory for global asymptotic analysis, Phys. Rev. Lett. 73 (1994) 1311}1315.
- R.B. Gri$ths, Nonanalytic behavior above the critical point in a random Ising ferromagnet, Phys. Rev. Lett. 23 (1969) 17}20.
- R.B. Gri$ths, P.A. Pearce, Position-space renormalization-group transformations: some proofs and some prob- lems, Phys. Rev. Lett. 41 (1978) 917}920.
- R.B. Gri$ths, P.A. Pearce, Mathematical properties of position-space renormalization-group transformations, J. Stat. Phys. 20 (1979) 499}545.
- K. Haller, T. Kennedy, Absence of renormalization group pathologies near the critical temperature } two examples, J. Stat. Phys. 85 (1996) 607}637.
- A. Hasenfratz, P. Hasenfratz, Singular renormalization group transformations and "rst order phase transitions (I), Nucl. Phys. B 295 (FS21) (1988) 1}20.
- J. Imbrie, The ground state of the three-dimensional random-"eld Ising model, Commun. Math. Phys. 98 (1985) 145}176.
- J. Imbrie, Phase diagrams an cluster expansions for P() models, Commun. Math. Phys. 82 (1981) 261}304 and 305}343.
- Y. Imry, S.K. Ma, Random-"eld instability of the ordered state of continuous symmetry, Phys. Rev. Lett. 35 (1975) 1399}1401.
- R.B. Israel, Convexity in the Theory of Lattice Gases, Princeton University Press, Princeton, NJ, 1979.
- R.B. Israel, Banach algebras and Kadano! transformations, in: J. Fritz, L. Lebowitz, D. SzaH sz (Eds.), Random Fields (Esztergom, 1979), Vol. II, North-Holland, Amsterdam, 1981, pp. 593}608.
- T. Kennedy, Some rigorous results on majority rule renormalization group transformations near the critical point, J. Stat. Phys. 72 (1993) 15}37.
- R. KoteckyH , D. Preiss, Cluster expansion for abstract polymer models, Commun. Math. Phys. 103 (1986) 491}498.
- O.K. Kozlov, Gibbs Description of a system of random variables, Probl. Inform. Transmission 10 (1974) 258}265.
- C. KuK lske, (Non-)Gibbsianness and phase transitions in random lattice spin models, Markov Process. Related Fields 5 (1999) 357}383.
- H. KuK nsch, Almost sure entropy and the variational principle for random "elds with unbounded state space, Z. Wahrscheinlichkeitstheorie Verw. Geb. 58 (1981) 69}85.
- J.L. Lebowitz, C. Maes, E.R. Speer, Statistical mechanics of probabilistic cellular automata, J. Stat. Phys. 59 (1990) 117}170.
- J.L. Lebowitz, E. Presutti, Statistical mechanics of systems of unbounded spins, Commun. Math. Phys. 50 (1976) 195}218.
- R. Lefevere, Weakly Gibbsian measures and quasilocality: a long range pair-interaction counterexample, J. Stat. Phys. 95 (1999) 789}793.
- R. Lefevere, Variational principle for some renormalized measures, J. Stat. Phys. 96 (1999) 109}134.
- R. Lefevere, A note on the renormalization group and contour expansions, Physica A 286 (2000) 599}610.
- J. LoK rinczi, K. Vande Velde, A note on the projection of Gibbs measures, J. Stat. Phys. 77 (1994) 881}887.
- J. LoK rinczi, Some results on the projected two-dimensional Ising model, in: M. Fannes, C. Maes, A. Verbeure (Eds.), Proceedings NATO ASI Workshop `On Three Levelsa, Plenum Press, New York, 1994, pp. 373}380.
- J. LoK rinczi, M. Winnink, Some remarks on almost Gibbs states, in: N. Boccara, E. Goles, S. Martinez, P. Picco (Eds.), Cellular Automata and Cooperative Systems, Kluwer, Dordrecht, 1993, pp. 423}432.
- C. Maes, K. Vande Velde, De"ning relative energies for the projected Ising measure, Helv. Phys. Acta 65 (1992) 1055}1068.
- C. Maes, K. Vande Velde, The (non-)Gibbsian nature of states invariant under stochastic transformations, Physica A 206 (1994) 587}603.
- C. Maes, K. Vande Velde, Relative energies for non-Gibbsian states, Commun. Math. Phys. 189 (1997) 277}286.
- C. Maes, F. Redig, S. Shlosman, A. Van Mo!aert, Percolation, path large deviations and weakly Gibbs states, Commun. Math. Phys. 209 (2000) 517}545.
- C. Maes, F. Redig, F. Takens, A. Van Mo!aert, E. Verbitsky, Intermittency and weak Gibbs states, preprint, 1999.
- C. Maes, F. Redig, A. Van Mo!aert, Almost Gibbsian versus weakly Gibbsian, Stoch. Proc. Appl. 79 (1999) 1}15.
- C. Maes, F. Redig, A. Van Mo!aert, The restriction of the Ising model to a layer, J. Stat. Phys. 94 (1999) 893}912.
- C. Maes, S. Shlosman, Freezing transition in the Ising model without internal contours, Prob. Theory Related Fields 115 (1999) 479}503.
- J. Magnen, V. Rivasseau, R. SeH neH or, Rigorous results on the ultraviolet limit of non-Abelian gauge theories, Phys. Lett. B283 (1992) 90}96; Construction of >M with an infrared cuto!, Commun. Math. Phys. 155 (1993)
- F. Martinelli, E. Olivieri, Some remarks on pathologies of renormalization-group transformations, J. Stat. Phys. 72 (1993) 1169}1177.
- F. Martinelli, E. Olivieri, Instability of renormalization-group pathologies under decimation, J. Stat. Phys. 79 (1995) 25}42.
- V. Rivasseau, From Perturbative to Constructive Renormalization, Princeton University Press, Princeton, NJ, 1991.
- S. Pirogov, Ya. Sinai. Phase diagrams of classical spin systems, Theor. Math. Phys. 25 (1975) 1185}1192, and 26 (1976) 39}49.
- M. Salmhofer, Renormalization, An Introduction, Springer, Berlin, 1999.
- R. Schonmann, Projections of Gibbs measures may be non-Gibbsian, Commun. Math. Phys. 124 (1989) 1}7.
- B. Simon, The Statistical Mechanics of Lattice Gases, Princeton University Press, Princeton, NJ, 1993.
- Ya.G. Sinai, Theory of Phase Transitions: Rigorous Results, Pergamon Press, Oxford, 1982.
- J. Slawny, Low temperature properties of classical lattice systems: phase transitions and phase diagrams, in: C. Domb, J.L. Lebowitz (Eds.), Phase Transitions and Critical Phenomena, Vol. 11, Academic Press, New York, 1987.
- W.G. Sullivan, Potentials for almost Markovian random "elds, Commun. Math. Phys. 33 (1973) 61}74.
- M. Zahradnik, An alternative version of Pirogov}Sinai theory, Commun. Math. Phys. 93 (1984) 559}581.
- A.C.D. van Enter, R. FernaH ndez, Problems with the de"nition of renormalized Hamiltonians for the momentum- space renormalization transformations, Phys. Rev. E 59 (1999) 5165}5171.
- A.C.D. van Enter, C. Maes, R.H. Schonmann, S. Shlosman, The Gri$ths singularity random "eld. On Dobrushin's way. From probability theory to statistical physics, Amer. Math. Soc. Transl. Ser. 2, Vol. 298, American Mathematical Society, Providence RI, 2000, pp. 51}58.