Steps Toward a Computational Metaphysics
2007, Journal of Philosophical Logic
https://doi.org/10.1007/S10992-006-9038-7Abstract
In this paper, the authors describe their initial investigations in computational metaphysics. Our method is to implement axiomatic metaphysics in an automated reasoning system. In this paper, we describe what we have discovered when the theory of abstract objects is implemented in prover9 (a first-order automated reasoning system which is the successor to otter). After reviewing the second-order, axiomatic theory of abstract objects, we show (1) how to represent a fragment of that theory in prover9’s first-order syntax, and (2) how prover9 then finds proofs of interesting theorems of metaphysics, such as that every possible world is maximal. We conclude the paper by discussing some issues for further research.
References (41)
- -Object(x) | Maximal(x) | -Situation(x) | -TrueIn(f1(x),x). [clausify].
- 5 -Object(x) | Maximal(x) | -Situation(x) | -TrueIn(~f1(x),x). [clausify].
- 6 -Object(x) | -World(x) | Situation(x). [clausify].
- 7 -Object(x) | -World(x) | Point(f2(x)). [clausify].
- 8 -Object(x) | -World(x) | -Proposition(y) | TrueIn(y,x)
- | -True(y,f2(x)). [clausify].
- 13 Point(f2(c1)). [hyper(7,a,12,a,b,10,a)].
- 15 Proposition(f1(c1)). [hyper(3,a,12,a,c,14,a),unit_del(a,11)].
- 16 True(~f1(c1),f2
- | True(f1(c1),f2(c1)). [hyper(2,a,13,a,b,15,a)].
- 17 Proposition(~f1(c1)). [hyper(1,a,15,a)].
- 18 TrueIn(~f1(c1),c1) | True(f1(c1),f2(c1)). [hyper(8,a,12,a,b,10,a,c,17,a,e,16,a)].
- 19 TrueIn(f1(c1),c1) | TrueIn(~f1(c1),c1). [hyper(8,a,12,a,b,10,a,c,15,a,e,18,b)].
- 20 TrueIn(f1(c1),c1). [hyper(5,a,12,a,c,14,a,d,19,b),unit_del(a,11)].
- $F. [hyper(4,a,12,a,c,14,a,d,20,a),unit_del(a,11)]. References
- Boyer, R. and J. Moore: 1979, A computational logic. New York: Academic Press [Harcourt Brace Jovanovich]. ACM Monograph Series.
- Huet, G.: 1973, 'The undecidability of unification in third order logic'. Information and Control 22(3), 257-267.
- Kalman, J.: 2001, Automated Reasoning with Otter. Princeton, N.J.: Rinton Press.
- Kohlhase, M.: 1998, 'Higher-order automated theorem proving'. In: Automated deduction-a basis for applications, Vol. I, Vol. 8 of Applied Logic Series. Dordrecht: Kluwer Academic Publishers, pp. 431-462.
- Kowalski, R.: 1970, 'The case for using equality axioms in automatic demonstration'. In: Symposium on Automatic Demonstration (Versailles, 1968), Lecture Notes in Mathematics, Vol. 125. Berlin: Springer, pp. 112-127.
- Leibniz, G.: 1890, 'untitled'. In: C. Gerhardt (ed.): Die philosophischen Schriften von Gottfried Wilhelm Leibniz, Vol. vii. Berlin: Olms.
- Linsky, B. and E. Zalta: 1994, 'In Defense of the Simplest Quantified Modal Logic'. Philosophical Perspectives 8, 189-211.
- Mally, E.: 1912, Gegenstandstheoretische Grundlagen der Logik und Logistik. Leipzig: Barth.
- Manzano, M.: 1996, Extensions of first order logic, Vol. 19 of Cambridge Tracts in Theoretical Computer Science. Cambridge: Cambridge University Press.
- McCune, W.: 2003a, 'Mace4 Reference Manual and Guide'. Technical Memorandum 264, Argonne National Laboratory, Argonne, IL. URL = <http://www-unix. mcs.anl.gov/AR/mace4/July-2005/doc/mace4.pdf>.
- McCune, W.: 2003b, 'Otter 3.3 Reference Manual'. Technical Memorandum 263, Argonne National Laboratory, Argonne, IL. URL = <http://www.mcs.anl. gov/AR/otter/otter33.pdf>.
- McCune, W.: 2006, 'Prover9 Manual'. Technical report, Argonne National Labora- tory. URL = <http://www-unix.mcs.anl.gov/ ∼ mccune/prover9/manual/>.
- Pelletier, F. and E. Zalta: 2000, 'How to Say Goodbye to the Third Man'. Nous 34(2), 165-202.
- Pietrzykowski, T.: 1973, 'A complete mechanization of second-order logic'. Journal of the Assocatlon for Computing Machinery 20(2), 333-365.
- Portoraro, F.: Winter 2005, 'Automated Reasoning'. In: E. N. Zalta (ed.): The Stanford Encyclopedia of Philosophy.
- Robinson, G. and L. Wos: 1969, 'Paramodulation and theorem-proving in first-order theories with equality'. In: Machine Intelligence, 4. American Elsevier, New York, pp. 135-150.
- Robinson, J. A.: 1963, 'Theorem-proving on the computer'. Journal of the Association of Computing Machinery 10, 163-174.
- Robinson, J. A.: 1965, 'Automatic deduction with hyper-resolution'. International Journal of Computer Mathematics 1, 227-234.
- Russell, B.: 1900, A Critical Exposition of the Philosophy of Leibniz. Cambridge: Cambridge University Press.
- Spinoza, B.: 1677, Ethics. Edited and translated by G.H.R Parkinson, Oxford: Oxford University Press, 2000.
- Wos, L., R. Overbeek, E. Lusk, and J. Boyle: 1992, Automated Reasoning: Introduction and Applications, 2nd edition. New York: McGraw-Hill.
- Wos, L., G. Robinson, D. Carson, and L. Shalla: 1967, 'The concept of demodulation in theorem proving'. Journal of the ACM 14(4), 698-709.
- Zalta, E.: 1983, Abstract Objects: An Introduction to Axiomatic Metaphysics. Dordrecht: D. Reidel Publishing Company.
- Zalta, E.: 1993, 'Twenty-five basic theorems in situation and world theory'. Journal of Philosophical Logic 22(4), 385-428.
- Zalta, E.: 1999, 'Natural numbers and natural cardinals as abstract objects: a partial reconstruction of Frege's Grundgesetze in object theory'. Journal of Philosophical Logic 28(6), 619-660.
- Zalta, E.: 2000, 'A (Leibnizian) Theory of Concepts'. Philosophiegeschichte und logische Analyse/Logical Analysis and History of Philosophy 3, 137-183.