Regional climate impacts of a possible future grand solar minimum
2015, Nature Communications
https://doi.org/10.1038/NCOMMS8535Abstract
Any reduction in global mean near-surface temperature due to a future decline in solar activity is likely to be a small fraction of projected anthropogenic warming. However, variability in ultraviolet solar irradiance is linked to modulation of the Arctic and North Atlantic Oscillations, suggesting the potential for larger regional surface climate effects. Here, we explore possible impacts through two experiments designed to bracket uncertainty in ultraviolet irradiance in a scenario in which future solar activity decreases to Maunder Minimum-like conditions by 2050. Both experiments show regional structure in the wintertime response, resembling the North Atlantic Oscillation, with enhanced relative cooling over northern Eurasia and the eastern United States. For a high-end decline in solar ultraviolet irradiance, the impact on winter northern European surface temperatures over the late twenty-first century could be a significant fraction of the difference in climate change between plausible AR5 scenarios of greenhouse gas concentrations.
References (60)
- Lockwood, M. Reconstruction and prediction of variations in the open solar magnetic flux and interplanetary conditions . Living Rev. Solar Phys. 10, 4 (2013).
- Lockwood, M. Solar change and climate: an update in the light of the current exceptional solar minimum. Proc. R. Soc. A 466, 303-329 (2010).
- Feulner, G. & Rahmstorf, S. On the effect of a new grand minimum of solar activity on the future climate on Earth. Geophys. Res. Lett. 37, L05707 (2010).
- Rozanov, E. V., Egorova, T. A., Shapiro, A. I. & Schmutz, W. K. Modeling of the atmospheric response to a strong decrease of the solar activity. Proc. Int. Astron. Union 7, 215-224 (2011).
- Jones, G. S., Lockwood, M. & Stott, P. A. What influence will future solar activity changes over the 21st century have on projected global near-surface temperature changes? J. Geophys. Res. 117, D05103 (2012).
- Anet, J. G. et al. Impact of a potential 21st century ''grand solar minimum'' on surface temperatures and stratospheric ozone. Geophys. Res. Lett. 40, 4420-4425 (2013).
- Meehl, G. A., Arblaster, J. M. & Marsh, D. R. Could a future ''Grand Solar Minimum'' like the Maunder Minimum stop global warming? Geophys. Res. Lett. 40, 1789-1793 (2013).
- Kuroda, Y. & Kodera, K. Effect of solar activity on the polar-night jet oscillation in the Northern and Southern Hemisphere winter. J. Meteorol. Soc. Jpn 80, 973-984 (2002).
- Matthes, K., Kuroda, Y., Kodera, K. & Langematz, U. Transfer of the solar signal from the stratosphere to the troposphere: Northern winter. J. Geophys. Res. 111, D06108 (2006).
- Gray, L. J. et al. A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns. J. Geophys. Res. Atmos. 118, 13,405-13,420 (2013).
- Woollings, T., Lockwood, M., Masato, G., Bell, C. & Gray, L. Enhanced signature of solar variability in Eurasian winter climate. Geophys. Res. Lett. 37, L20805 (2010).
- Ineson, S. et al. Solar forcing of winter climate variability in the northern hemisphere. Nat. Geosci. 4, 753-757 (2011).
- Shindell, D. T., Schmidt, G. A., Mann, M. E., Rind, D. & Waple, A. Solar forcing of regional climate change during the Maunder Minimum. Science 294, 2149-2152 (2001).
- Gerber, E. P. et al. Assessing and understanding the impact of stratospheric dynamics and variability on the earth system. Bull. Am. Meteorol. Soc. 93, 845-859 (2012).
- Simpson, I. R., Blackburn, M. & Haigh, J. D. The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J. Atmos. Sci. 66, 1347-1365 (2009).
- Ermolli, I. et al. Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys. 13, 3945-3977 (2013).
- Harder, J. W., Fontenla, J. M., Pilewskie, P., Richard, E. C. & Woods, T. N. Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett. 36, L07801 (2009).
- Haigh, J. D., Winning, A., Toumi, R. & Harder, J. W. An influence of solar spectral variations on radiative forcing of climate. Nature 467, 696-699 (2010).
- Lean, J. Evolution of the Sun's Spectral Irradiance since the Maunder Minimum. Geophys. Res. Lett. 27, 2425-2428 (2000).
- Maycock, A. C. et al. Possible impacts of a future Grand Solar Minimum on climate: stratospheric and global circulation changes. J. Geophys. Res. Atmos. (http://onlinelibrary.wiley.com/doi/10.1002/2014JD022022/full).
- Roy, I. & Haigh, J. D. Solar cycle signals in sea level pressure and sea surface temperature. Atmos. Chem. Phys. 10, 3147-3153 (2010).
- Hood, L., Schimanke, S., Spangehl, T., Bal, S. & Cubasch, U. The surface climate response to 11-yr solar forcing during northern winter: observational analyses and comparisons with GCM simulations. J. Clim. 26, 7489-7506 (2013).
- Morgenstern, O. H. et al. Anthropogenic forcing of the northern annular mode in CCMVal2 models. J. Geophys. Res. 115, D00M03 (2010).
- Scaife, A. A. et al. Climate change projections and stratosphere-troposphere interaction. Clim. Dyn. 38, 2089-2097 (2012).
- Giorgi, F. & Francisco, R. Uncertainties in regional climate change predictions. A regional analysis of ensemble simulations with the HADCM2 GCM. Clim. Dyn. 16, 169-182 (2000).
- Jung, T. & Hilmer, M. The link between the North Atlantic Oscillation and Arctic Sea ice export through Fram Strait. J. Clim. 14, 3932-3943 (2001).
- Strong, C. & Magnusdottir, G. Modeled winter sea ice variability and the North Atlantic Oscillation: a multi-century perspective. Clim. Dyn. 34, 515-525 (2010).
- Thompson, D. W. J. & Wallace, J. M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fieldsGeophys. Res. Lett. 25, 1297-1300 (1998).
- Scaife, A. A., Folland, C. K., Alexander, L. V., Moberg, A. & Knight, J. R. European climate extremes and the North Atlantic Oscillation. J. Clim. 21, 72-83 (2008).
- Jones, C. D. et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev. 4, 543-570 (2011).
- IPCC. Climate Change 2013: The Physical Science Basis. (eds Stocker, T. et al.) (Cambridge Univ. Press, 2013).
- Lockwood, M., Harrison, R. G., Woollings, T. & Solanki, S. K. Are cold winters in Europe associated with low solar activity? Environ. Res. Lett. 5, 024001 (2010).
- Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303, 1499-1503 (2004).
- Moffa-Sa ´nchez, P., Born, A., Hall, I. R., Thornalley, D. J. R. & Barker, S. Solar forcing of North Atlantic surface temperature and salinity over the past millennium. Nat. Geosci. 7, 275-278 (2014).
- Scaife, A. A. et al. A mechanism for lagged North Atlantic climate response to solar variability. Geophys. Res. Lett. 40, 434-439 (2013).
- Eden, C. & Willebrand, J. Mechanism of Interannual to Decadal Variability of the North Atlantic Circulation. J. Clim. 14, 2266-2280 (2001).
- Miller, G. H. et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett. 39, L02708 (2012).
- Lehner, F., Born, A., Raible, C. C. & Stocker, T. F. Amplified inception of European Little Ice Age by sea ice-ocean-atmosphere feedbacks. J. Clim. 26, 7586-7602 (2013).
- Schleussner, C. F. & Feulner, G. A volcanically triggered regime shift in the subpolar North Atlantic Ocean as a possible origin of the Little Ice Age. Clim. Past 9, 1321-1330 (2013).
- Menary, M. B. & Scaife, A. A. Naturally forced multidecadal variability of the Atlantic meridional overturning circulation. Clim. Dyn. 42, 1347-1362 (2014).
- Vellinga, M., Wood, R. A. & Gregory, J. M. Processes governing the recovery of a perturbed thermohaline circulation in HadCM3. J. Clim. 15, 764-780 (2002).
- Cubasch, U. et al. Simulation of the role of solar and orbital forcing on climate. Adv. Space Res. 37, 1629-1634 (2006).
- Gray, L. J. et al. Solar influences on climate. Rev. Geophys. 48, RG4001 (2010).
- Eddy, J. A. The Maunder Minimum. Science 192, 1189-1202 (1976).
- Luterbacher, J. et al. The late Maunder Minimum (1675-1715) -A key period for studying decadal scale climatic change in Europe. Clim. Change 49, 441-462 (2001).
- Pinto, J. G. & Raible, C. C. Past and recent changes in the North Atlantic oscillation. WIREs Clim. Change 3, 79-90 (2012).
- Spangehl, T. et al. Transient climate simulations from the Maunder Minimum to present day: role of the stratosphere. J. Geophys. Res. 115, D00I10 (2010).
- Martin-Puertas, C. et al. Regional atmospheric circulation shifts induced by a grand solar minimum. Nat. Geosci. 5, 397-401 (2012).
- Anet, J. G. et al. Impact of solar versus volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum. Clim. Past 10, 921-938 (2014).
- Lean, J. L. & Rind, D. H. How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys. Res. Lett. 35 (2008).
- Usoskin, I. G., Solanki, S. K. & Kovaltsov, G. A. Grand minima and maxima of solar activity: new observational constraints. Astron. Astrophys. 471, 301-309 (2007).
- Steinhilber, F., Abreu, J. A. & Beer, J. Solar modulation during the Holocene. Astrophys. Space Sci. Trans. 4, 1-6 (2008).
- Barnard, L. et al. Predicting space climate change. Geophys. Res. Lett. 38, L16103 (2011).
- Steinhilber, F. & Beer, J. Prediction of solar activity for the next 500 years. J. Geophys. Res. Space Phys. 118, 1861-1867 (2013).
- Martin, G. M. et al. The HadGEM2 family of Met Office Unified Model climate configurations. Geosci. Model Dev. 4, 723-757 (2011).
- Hardiman, S. C., Butchart, N., Hinton, T. J., Osprey, S. M. & Gray, L. J. The effect of a well-resolved stratosphere on surface climate: differences between CMIP5 simulations with high and low top versions of the Met Office Climate Model. J. Clim. 25, 7083-7099 (2012).
- Mitchell, D. M. et al. The effect of climate change on the variability of the Northern Hemisphere stratospheric polar vortex. J. Atmos. Sci. 69, 2608-2618 (2012).
- Osprey, S. M., Gray, L. J., Hardiman, S. C., Butchart, N. & Hinton, T. J. Stratospheric variability in twentieth-century CMIP5 simulations of the Met Office climate model: high top versus low top. J. Clim. 26, 1595-1606 (2013).
- Lockwood, M. et al. Top-down solar modulation of climate: evidence for centennial-scale change. Environ. Res. Lett. 5, 034008 (2010).
- Haigh, J. D. A. GCM study of climate change in response to the 11-year solar cycle. Quart. J. Roy. Meteorol. Soc. 125, 871-892 (1999).