Academia.eduAcademia.edu

Outline

Turbulent spots in hypervelocity flow

2017, Experiments in Fluids

https://doi.org/10.1007/S00348-017-2317-Y

Abstract

The turbulent spot propagation process in boundary layer flows of air, nitrogen, carbon dioxide, and air/carbon dioxide mixtures in thermochemical nonequilibrium at high enthalpy is investigated. Experiments are performed in a hypervelocity reflected shock tunnel with a 5-degree half-angle axisymmetric cone instrumented with flush-mounted fast-response coaxial thermocouples. Time resolved and spatially demarcated heat transfer traces are used to track the propagation of turbulent bursts within the mean flow, and convection rates at approximately 91, 74, and 63% of the boundary layer edge velocity, respectively, are observed for the leading edge, peak, and trailing edge of the spots. A simple model constructed with these spot propagation parameters is used to infer spot generation rates from observed transition onset to completion distance. Spot generation rates in air and nitrogen are estimated to be approximately twice the spot generation rates in air/carbon dioxide mixtures.

References (47)

  1. Abu-Ghannam BJ, Shaw R (1980) Natural transition of boundary lay- ers-the effects of turbulence, pressure gradient. J Mech Eng Sci 22(5):213-228. doi:10.1243/JMES_JOUR_1980_022_043_02
  2. Anthony RJ, Jones TV, LaGraff JE (2005) High frequency surface heat flux imaging of bypass transition. J Turbomach 127(2):241- 250. doi:10.1115/1.1860379
  3. Bitter NP, Shepherd JE (2015) Stability of highly cooled hyperveloc- ity boundary layers. J Fluid Mech 778:586-620
  4. Casper KM, Beresh SJ, Schneider SP (2014) Pressure fluctuations beneath instability wavepackets and turbulent spots in a hyper- sonic boundary layer. J Fluid Mech 756:1058-1091. doi:10.1017/ jfm.2014.475
  5. Casper KM, Beresh SJ, Henfling JF, Spillers RW, Pruett BOM, Sch- neider SP (2016) Hypersonic wind-tunnel measurements of boundary-layer transition on a slender cone. AIAA J 54(1):1250- 1263. doi:10.2514/1.J054033
  6. Cebeci T, Smith AMO (1974) Analysis of turbulent boundary layers. Academic Press, London
  7. Chen KK, Thyson NA (1971) Extension of Emmons' spot theory to flows on blunt bodies. AIAA J 9(5):821-825. doi:10.2514/3.6281
  8. Chong TP, Zhong S (2005) On the three-dimensional structure of turbulent spots. J Turbomach 127(3):545-551. doi:10.1115/ GT2003-38435
  9. Clark JP (1993) A Study of turbulent-spot propagation in turbine-rep- resentative flows. PhD thesis, University of Oxford, Oxford, UK
  10. Clark JP, Jones TV, LaGraff JE (1994) On the propagation of nat- urally-occurring turbulent spots. J Eng Math 28(1):1-19. doi:10.1007/BF02383602
  11. Dhawan S, Narasimha R (1958) Some properties of boundary layer flow during the transition from laminar to turbulent motion. J Fluid Mech 3(4):418-436. doi:10.1017/S0022112058000094
  12. Doorley DJ, Smith FT (1992) Initial-value problems for spot distur- bances in incompressible or compressible boundary layers. J Eng Math 26(1):87-106. doi:10.1007/BF00043229
  13. Draper NR, Smith H (1998) Applied regression analysis. Wiley-Inter- science, New York
  14. Emmons HW (1951) The laminar-turbulent transition in a boundary layer: part I. J Aeronaut Sci 18(7):490-498. doi:10.2514/8.2010
  15. Fedorov AV (2003) Receptivity of a high-speed boundary layer to acoustic disturbances. J Fluid Mech 491:101-129. doi:10.1017/ S0022112003005263
  16. Fedorov AV (2013) Receptivity of a supersonic boundary layer to solid particulates. J Fluid Mech 737:105-131. doi:10.1017/ jfm.2013.564
  17. Fiala A, Hillier R, Mallinson SG, Wijesinghe HS (2006) Heat transfer measurement of turbulent spots in a hypersonic blunt- body boundary layer. J Fluid Mech 555:81-111. doi:10.1017/ S0022112006009396
  18. Fischer MC (1972) Spreading of a turbulent disturbance. AIAA J 10(7):957-959. doi:10.2514/3.50265
  19. Hofeldt AJ Jr (1996) The investigation of naturally-occurring tur- bulent spots using thin-film gauges. PhD thesis, University of Oxford, Oxford, UK
  20. Hornung HG (1992) Performance data of the new free-piston shock tunnel at GALCIT. In: Proceedings of 17th AIAA aerospace ground testing conference, AIAA, Nashville, TN. doi:10.2514/6.1992-3943, AIAA-1992-3943
  21. James CS (1958) Observations of turbulent-burst geometry and growth in supersonic flow. NACA-TN-4235, NACA
  22. Jewell JS (2008) Boundary layer transition in hypersonic flows. Mas- ter's thesis, University of Oxford, Oxford, UK
  23. Jewell JS (2014) Boundary-layer transition on a slender cone in hypervelocity flow with real gas effects. PhD thesis, California Institute of Technology, Pasadena, CA. doi:10.7907/Z9H9935V
  24. Jewell JS, Shepherd JE (2014) T5 conditions report: Shots 2526- 2823. Technical reports, California Institute of Technol- ogy, Pasadena, CA doi:10.7907/Z9H9935V, GALCIT Report FM2014.002
  25. Jewell JS, Parziale NJ, Leyva IA, Shepherd JE (2017) Effects of shock-tube cleanliness on hypersonic boundary layer transition at high enthalpy. AIAA J 55(1):332-338. doi:10.2514/1.J054897
  26. Jocksch A (2009) Direct numerical simulation of turbulent spots in high-speed boundary layers. PhD thesis, Eidgenössische Tech- nische Hochschule ETH Zürich, Nr. 18104, Zürich, Switzerland Jocksch A, Kleiser L (2008) Growth of turbulent spots in high- speed boundary layers on a flat plate. Int J Heat Fluid Flow 29(6):1543-1557. doi:10.1016/j.ijheatfluidflow.2008.08.008
  27. Kimmel RL (1993) The effect of pressure gradients on transition zone length in hypersonic boundary layers. WL-TR-94-3012, Wright Laboratory
  28. Krishnan L, Sandham ND (2006) Effect of Mach number on the struc- ture of turbulent spots. J Fluid Mech 566:225-234. doi:10.1017/ S0022112006002412
  29. Laurence S, Wagner A, Hannemann K (2016) Experimental study of second-mode instability growth and breakdown in a hypersonic boundary layer using high-speed schlieren visualization. J Fluid Mech 797:471-503. doi:10.1017/jfm.2016.280
  30. Laurence SJ, Wagner A, Hannemann K, Wartemann V, Lüdeke H, Tanno H, Itoh K (2012) Time-resolved visualization of instabil- ity waves in a hypersonic boundary layer. AIAA J 50(1):243- 246. doi:10.2514/1.J05112
  31. Marineau EC, Hornung HG (2009) Modeling and calibration of fast-response coaxial heat flux gages. In: 47th aerospace sci- ences meeting, AIAA, Orlando, FL doi:10.2514/6.2009-737, aIAA-2009-0737
  32. Mee DJ (2002) Boundary-layer transition measurements in hyper- velocity flows in a shock tunnel. AIAA J 40(8):1542-1548. doi:10.2514/2.1851
  33. Mee DJ, Goyne CP (1996) Turbulent spots in boundary layers in a free-piston shock-tunnel flow. Shock Waves 6(6):337-343. doi:10.1007/BF02511324
  34. Mee DJ, Tanguy G (2015) Turbulent spot initiation rates in boundary layers in a shock tunnel. In: Bonazza R, Ranjan D (eds) Proceedings of the 29th international sym- posium on shock waves 1, Springer, Cham, pp 623-628. doi:10.1007/978-3-319-16835-7_99
  35. Narasimha R (1957) On the distribution of intermittency in the transi- tion region of a boundary layer. J Aeronaut Sci 24(9):711-712. doi:10.2514/8.3944
  36. Narasimha R (1985) The laminar-turbulent transition zone in the boundary layer. Prog Aerosp Sci 22:29-80. doi:10.1016/0376-0421(85)90004-1
  37. Parziale NJ, Jewell JS, Shepherd JE, Hornung HG (2012a) Shock tunnel noise measurement with resonantly enhanced focused schlieren deflectometry. In: Kontis K (eds) Proceedings of the 28th international symposium on shock waves, Springer, Berlin, Heidelberg, pp 747-752. doi:10.1007/978-3-642-25688-2_113
  38. Parziale NJ, Shepherd JE, Hornung HG (2012b) Reflected shock tunnel noise measurement by focused differential interferom- etry. In: Proceedings of the 42nd AIAA fluid dynamics confer- ence and exhibit, AIAA-2012-3261, New Orleans, Louisiana. doi:10.2514/6.2012-3261
  39. Sanderson SR, Sturtevant B (2002) Transient heat flux measure- ment using a surface junction thermocouple. Rev Sci Instrum 73(7):2781-2787. doi:10.1063/1.1484255
  40. Schubauer GB, Klebanoff PS (1955) Contributions on the mechanics of boundary-layer transition. NACA-TR-1289, NACA
  41. Sivasubramanian J, Fasel HF (2010) Direct numerical simulation of a turbulent spot in a cone boundary-layer at Mach 6. In: Pro- ceedings of 40th AIAA fluid dynamics conference and exhibit, AIAA-2010-4599, Chicago, IL. doi:10.2514/6.2010-4599
  42. Sivasubramanian J, Fasel HF (2012) Growth and breakdown of a wave packet into a turbulent spot in a cone boundary layer at mach 6. In: Proceedings of the 50th AIAA aerospace sci- ences meeting, AIAA-2012-0085, Nashville, Tennessee. doi:10.2514/6.2012-0085
  43. Sivasubramanian J, Fasel HF (2015) Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6: funda- mental breakdown. J Fluid Mech 768:175-218. doi:10.1017/ jfm.2014.678
  44. Vinod N, Rama G (2004) Pattern of breakdown of laminar flow into turbulent spots. Phys Rev Lett 93(11):114501. doi:10.1103/ PhysRevLett.93.114501
  45. White FM, Christoph GH (1972) A simple theory for the two- dimensional compressible turbulent boundary layer. J Basic Eng 94(3):636-642. doi:10.1115/1.3425519
  46. York D, Evensen NM, Martınez ML, Delgado JDB (2004) Unified equations for the slope, intercept, and standard errors of the best straight line. Am J Phys 72(3):367-375
  47. Zanchetta M, Hillier R (1996) Boundary layer transition on slender blunt cones at hypersonic speeds. In: Proceedings of the 20th international symposium on shock waves. ISSW, Pasadena, CA, pp 699-704