Anomalous dynamics of cell migration
2008, Proceedings of The National Academy of Sciences
https://doi.org/10.1073/PNAS.0707603105Abstract
Cell movement-for example, during embryogenesis or tumor metastasis-is a complex dynamical process resulting from an intricate interplay of multiple components of the cellular migration machinery. At first sight, the paths of migrating cells resemble those of thermally driven Brownian particles. However, cell migration is an active biological process putting a characterization in terms of normal Brownian motion into question. By analyzing the trajectories of wild-type and mutated epithelial (transformed Madin-Darby canine kidney) cells, we show experimentally that anomalous dynamics characterizes cell migration. A superdiffusive increase of the mean squared displacement, non-Gaussian spatial probability distributions, and power-law decays of the velocity autocorrelations is the basis for this interpretation. Almost all results can be explained with a fractional Klein-Kramers equation allowing the quantitative classification of cell migration by a few parameters. Thereby, it discloses the influence and relative importance of individual components of the cellular migration apparatus to the behavior of the cell as a whole. data analysis ͉ fractional dynamics ͉ non-Brownian motion
References (26)
- Jalali S, del Pozo MA, Chen K, Miao H, Li Y, Schwartz MA, Shyy JY, Chien S (2001) Proc Natl Acad Sci USA 98:1042-1046.
- Lauffenburger DA, Horwitz AF (1996) Cell 84:359 -369.
- Rafelski SM, Theriot JA (2004) Annu Rev Biochem 73:209 -239.
- Schwab A, Nechyporuk-Zloy V, Fabian A, Stock C (2007) Pflu ¨gers Arch 453:421- 432.
- Mogilner A, Edelstein-Keshet L (2002) Biophys J 83:1237-1258.
- Alt W, Dembo M (1999) Math Biosci 156:207-228.
- Be ´nichou O, Coppey M, Moreau M, Voituriez R (2006) Europhys Lett 75:349 -354.
- Dunn GA, Brown AF (1987) J Cell Sci Suppl 8:81-102.
- Stokes CL, Lauffenburger DA, Williams SK (1991) J Cell Sci 99:419 -430.
- Hartman RS, Lau K, Chou W, Coates TD (1994) Biophys J 67:2535-2545.
- Upadhyaya A, Rieu JP, Glazier JA, Sawada Y (2001) Physica A 293:549 -558.
- Schwab A, Rossmann H, Klein M, Dieterich P, Gassner B, Neff C, Stock C, Seidler U (2005) J Physiol 568:445-458.
- Uhlenbeck GE, Ornstein LS (1930) Phys Rev 36:823-841.
- Doob JL (1942) Ann Math 43:351-369.
- Denker SP, Barber DL (2002) J Cell Biol 159:1087-1096.
- Stock C, Gassner B, Hauck CR, Arnold H, Mally S, Eble JA, Dieterich P, Schwab A (2005) J Physiol 567:225-238.
- Risken H (1989) The Fokker-Planck Equation-Methods of Solutions and Applications (Springer, Berlin), 2nd Ed.
- Barkai E, Silbey R (2000) J Phys Chem B 104:3866 -3874.
- Schneider WR, Wyss W (1989) J Math Phys 30:134 -144.
- Metzler R, Klafter J (2000) Phys Rep 339:1-77.
- Lutz E (2001) Phys Rev E 64:051106.
- Erdelyi A (1955) Higher Transcendental Functions (McGraw-Hill, New York).
- Martin DS, Forstner MB, Ka ¨s J (2002) Biophys J 83:2109 -2117.
- Jaynes ET, Bretthorst GL (2003) Probability Theory-The Logic of Science (Cambridge Univ Press, Cambridge, UK).
- Dose V (2003) Rep Prog Phys 66:1421-1461.
- Qian H, Sheetz MP, Elson EL (1991) Biophys J 60:910 -921.