Academia.eduAcademia.edu

Outline

The Price of Local Power Control in Wireless Scheduling

2015

Abstract

We first show that the known algorithms fail to obtain sub-logarithmic bounds; that is, their approximation ratio are $\tilde\Omega(\log \max(\Delta,n))$, where $n$ is the number of links, $\Delta$ is the ratio of the maximum and minimum link lengths, and $\tilde\Omega$ hides doubly-logarithmic factors. We then present the first $O(\log{\log\Delta})$-approximation algorithm, which is known to be best possible (in terms of $\Delta$) for oblivious power schemes. We achieve this by representing interference by a conflict graph, which allows the application of graph-theoretic results for a variety of related problems, including the weighted capacity problem. We explore further the contours of approximability, and find the choice of power assignment matters; that not all metric spaces are equal; and that the presence of weak links makes the problem harder. Combined, our result resolve the price of oblivious power for wireless scheduling, or the value of allowing unfettered power control.

References (50)

  1. K. Akcoglu, J. Aspnes, B. DasGupta, and M.-Y. Kao. Opportunity-cost algorithms for com- binatorial auctions. In E. J. Kontoghiorghes, B. Rustem, and S. Siokos, editors, Applied Optimization 74: Computational Methods in Decision-Making, Economics and Finance, pages 455-479. Kluwer Academic Publishers, 2002.
  2. C. Avin, Y. Emek, E. Kantor, Z. Lotker, D. Peleg, and L. Roditty. SINR diagrams: Convexity and its applications in wireless networks. J. ACM, 59(4), 2012.
  3. M. Bodlaender and M. M. Halldórsson. Beyond geometry: Towards fully realistic wireless models. In PODC, 2014.
  4. I. Caragiannis, A. V. Fishkin, C. Kaklamanis, and E. Papaioannou. A tight bound for online colouring of disk graphs. Theor. Comput. Sci., 384(2-3):152-160, 2007.
  5. D. Chafekar, V. Kumar, M. Marathe, S. Parthasarathy, and A. Srinivasan. Cross-layer latency minimization for wireless networks using SINR constraints. In Mobihoc, 2007.
  6. R. L. Cruz and A. Santhanam. Optimal Routing, Link Scheduling, and Power Control in Multi-hop Wireless Networks. In INFOCOM, 2003.
  7. J. Dams, M. Hoefer, and T. Kesselheim. Scheduling in wireless networks with rayleigh-fading interference. In SPAA, pages 327-335, 2012.
  8. S. Daum, S. Gilbert, F. Kuhn, and C. C. Newport. Broadcast in the ad hoc SINR model. In DISC, pages 358-372, 2013.
  9. B. Derbel and E.-G. Talbi. Distributed node coloring in the SINR model. In ICDCS, pages 708-717, 2010.
  10. M. Dinitz. Distributed algorithms for approximating wireless network capacity. In INFOCOM, pages 1397-1405, 2010.
  11. T. ElBatt and A. Ephremides. Joint Scheduling and Power Control for Wireless Ad-hoc Networks. In INFOCOM, 2002.
  12. A. Fanghänel, T. Kesselheim, H. Räcke, and B. Vöcking. Oblivious interference scheduling. In PODC, pages 220-229, August 2009.
  13. A. Fanghänel, T. Kesselheim, and B. Vöcking. Improved algorithms for latency minimization in wireless networks. Theoretical Computer Science, 412(24):2657-2667, 2011.
  14. L. Fu, S. C. Liew, and J. Huang. Power controlled scheduling with consecutive transmission constraints: complexity analysis and algorithm design. In INFOCOM, pages 1530-1538. IEEE, 2009.
  15. O. Goussevskaia, M. M. Halldórsson, and R. Wattenhofer. Algorithms for wireless capacity. IEEE/ACM Trans. Netw., 22(3):745-755, 2014.
  16. O. Goussevskaia, Y.-A. Oswald, and R. Wattenhofer. Complexity in geometric SINR. In MobiHoc, pages 100-109, 2007.
  17. H. Gudmundsdottir, E. I. Ásgeirsson, M. Bodlaender, J. T. Foley, M. M. Halldórsson, and Y. Vigfusson. Measurement based interference models for wireless scheduling algorithms. In MSWiM, 2014. arXiv:1401.1723.
  18. P. Gupta and P. R. Kumar. The Capacity of Wireless Networks. IEEE Trans. Information Theory, 46(2):388-404, 2000.
  19. A. Gyárfás and J. Lehel. On-line and first fit colorings of graphs. Journal of Graph Theory, 12(2):217-227, 1988.
  20. M. M. Halldórsson. Wireless scheduling with power control. ACM Transactions on Algorithms, 9(1):7, December 2012.
  21. M. M. Halldórsson and J. Bang-Jensen. A note on vertex coloring edge-weighted digraphs. Technical Report 29, Institute Mittag-Leffler, Preprints Graphs, Hypergraphs, and Computing, 2014.
  22. M. M. Halldórsson, S. Holzer, P. Mitra, and R. Wattenhofer. The power of non-uniform wireless power. In SODA, pages 1595-1606, 2013.
  23. M. M. Halldórsson and C. Konrad. Distributed algorithms for coloring interval graphs. In Dis- tributed Computing -28th International Symposium, DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings, pages 454-468, 2014.
  24. M. M. Halldórsson and P. Mitra. Nearly optimal bounds for distributed wireless scheduling in the SINR model. In ICALP, 2011.
  25. M. M. Halldórsson and P. Mitra. Wireless Capacity with Oblivious Power in General Metrics. In SODA, 2011.
  26. M. M. Halldórsson and P. Mitra. Towards tight bounds for local broadcasting. In FOMC, pages 2:1-2:9, 2012.
  27. M. M. Halldórsson and P. Mitra. Wireless capacity and admission control in cognitive radio. In INFOCOM, pages 855-863, 2012.
  28. M. M. Halldórsson and T. Tonoyan. How well can graphs represent wireless interference? To appear in STOC. arXiv preprint arXiv:1411.1263, 2015.
  29. M. M. Halldórsson and R. Wattenhofer. Wireless communication is in APX. In ICALP, pages 525-536, 2009.
  30. J. Heinonen. Lectures on Analysis on Metric Spaces. Springer, 1 edition, 2000.
  31. T. Jurdzinski, D. R. Kowalski, M. Rozanski, and G. Stachowiak. On the impact of geometry on ad hoc communication in wireless networks. CoRR, abs/1406.2852, 2014. To appear in PODC.
  32. F. Kammer and T. Tholey. Approximation algorithms for intersection graphs. Algorithmica, 68(2):312-336, 2014.
  33. B. Katz, M. Volker, and D. Wagner. Energy efficient scheduling with power control for wireless networks. In WiOpt, pages 160-169. IEEE, 2010.
  34. T. Kesselheim. A Constant-Factor Approximation for Wireless Capacity Maximization with Power Control in the SINR Model. In SODA, 2011.
  35. T. Kesselheim. Approximation algorithms for wireless link scheduling with flexible data rates. In ESA, pages 659-670, 2012.
  36. T. Kesselheim and B. Vöcking. Distributed contention resolution in wireless networks. In DISC, pages 163-178, August 2010.
  37. H. Lin and F. Schalekamp. On the complexity of the minimum latency scheduling problem on the Euclidean plane. arXiv preprint 1203.2725, 2012.
  38. R. Maheshwari, S. Jain, and S. R. Das. A measurement study of interference modeling and scheduling in low-power wireless networks. In SenSys, pages 141-154, 2008.
  39. T. Moscibroda, Y.-A. Oswald, and R. Wattenhofer. How optimal are wireless scheduling protocols? In INFOCOM, pages 1433-1441, 2007.
  40. T. Moscibroda and R. Wattenhofer. The complexity of connectivity in wireless networks. In INFOCOM, pages 1-13, 2006.
  41. T. Moscibroda, R. Wattenhofer, and Y. Weber. Protocol design beyond graph-based models. In HotNets, 2006.
  42. T. Moscibroda, R. Wattenhofer, and A. Zollinger. Topology control meets SINR: the scheduling complexity of arbitrary topologies. In MobiCom, pages 310-321, 2006.
  43. T. S. Rappaport. Wireless Communications: Principles and Practice. Prentice Hall, 2 edition, 2002.
  44. D. Son, B. Krishnamachari, and J. Heidemann. Experimental study of concurrent transmission in wireless sensor networks. In SenSys, pages 237-250. ACM, 2006.
  45. L. Tassiulas and A. Ephremides. Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Trans. Au- tomat. Contr., 37(12):1936-1948, 1992.
  46. T. Tonoyan. On the capacity of oblivious powers. In ALGOSENSORS, pages 225-237, 2011.
  47. T. Tonoyan. On some bounds on the optimum schedule length in the SINR model. In ALGO- SENSORS, pages 120-131, 2012.
  48. Y. Ye and A. Borodin. Elimination graphs. ACM Transactions on Algorithms, 8(2):14:1-14:23, 2012.
  49. D. Yu, Y. Wang, Q.-S. Hua, and F. C. Lau. Distributed (delta+1)-coloring in the physical model. Theor. Comput. Sci., 553:37-56, 2014.
  50. D. Yu, Y. Wang, Q.-S. Hua, and F. C. M. Lau. An O(log n) distributed approximation algorithm for local broadcasting in unstructured wireless networks. In DCOSS, pages 132-139, 2012.