Finding All Essential Terms Of A Characteristic Maxpolynomial
2003, Discrete Applied Mathematics
https://doi.org/10.1016/S0166-218X(03)00223-3Abstract
AI
AI
This paper explores the max-algebraic characteristic polynomial of a square matrix, specifically focusing on developing algorithms to identify all essential terms of the characteristic maxpolynomial. An O(n^4) algorithm is introduced for real n × n matrices, and modifications are discussed for matrices that include negative infinity as entries, achieving a complexity reduction to O(n^2(m+n log n)). The implications of this approach extend to identifying principal submatrices relevant to maximum assignment problems, thereby contributing to the fields of automata theory and scheduling.
References (15)
- R.K. Ahuja, T. Magnanti, J.B. Orlin, Network Flows: Theory, Algorithms and Applications, Prentice-Hall, Englewood Cli s, NJ, 1993.
- F.L. Baccelli, G. Cohen, G.-J. Olsder, J.-P. Quadrat, Synchronization and Linearity, Wiley, New York, 1992.
- P. ButkoviÄ c, On the coe cients of the max-algebraic characteristic polynomial and equation, Proceedings of the Workshop on Max-algebra, Symposium of the International Federation of Automatic Control, Prague, 2001.
- P. ButkoviÄ c, L. Murÿtt, Calculating essential terms of a characteristic maxpolynomial, CEJOR 8 (2000) 237-246.
- R.A. Cuninghame-Green, Minimax algebra, in: Lecture Notes in Economics and Math. Systems, Vol. 166, Springer, Berlin, 1979.
- R.A. Cuninghame-Green, The characteristic maxpolynomial of a matrix, J. Math. Anal. Appl. 95 (1983) 110-116.
- R.A. Cuninghame-Green, Minimax algebra and applications, in: Advances in Imaging and Electron Physics, Vol. 90, Academic Press, New York, 1995, pp. 1-121.
- M. Dell'Amico, S. Martello, The k-cardinality assignment problem, Second International Colloquium on Graphs and Optimization, Leukerbad, 1994, Discrete Appl. Math. 76 (1-3) (1997) 103-121.
- S. Gaubert, Thà eorie des syst emes linà eaires dans les dio des, Th ese. Ecole des Mines de Paris, 1992.
- S. Gaubert, P. ButkoviÄ c, R.A. Cuninghame-Green, Minimal (max, +) realization of convex sequences, SIAM J. Control Optim. 36 (1) (1998) 137-147.
- M. Gondran, M. Minoux, L'indà ependance linà eaire dans les dio des, Bull. Direction à Etudes Rech. Sà er.
- C Math. Inform. 1 (1978) 67-90.
- M. Gondran, M. Minoux, Linear algebra of dio ds: a survey of recent results, Ann. Discrete Math. 19 (1984) 147-164.
- G.J. Olsder, C. Roos, Cramà er and Cayley-Hamilton in the max algebra, Linear Algebra Appl. 101 (1988) 87-108.
- U. Zimmermann, Linear and combinatorial optimization in ordered algebraic structures, Annals of Discrete Mathematics, Vol. 10, North-Holland, Amsterdam, 1981.