Academia.eduAcademia.edu

Outline

Finding All Essential Terms Of A Characteristic Maxpolynomial

2003, Discrete Applied Mathematics

https://doi.org/10.1016/S0166-218X(03)00223-3

Abstract
sparkles

AI

This paper explores the max-algebraic characteristic polynomial of a square matrix, specifically focusing on developing algorithms to identify all essential terms of the characteristic maxpolynomial. An O(n^4) algorithm is introduced for real n × n matrices, and modifications are discussed for matrices that include negative infinity as entries, achieving a complexity reduction to O(n^2(m+n log n)). The implications of this approach extend to identifying principal submatrices relevant to maximum assignment problems, thereby contributing to the fields of automata theory and scheduling.

References (15)

  1. R.K. Ahuja, T. Magnanti, J.B. Orlin, Network Flows: Theory, Algorithms and Applications, Prentice-Hall, Englewood Cli s, NJ, 1993.
  2. F.L. Baccelli, G. Cohen, G.-J. Olsder, J.-P. Quadrat, Synchronization and Linearity, Wiley, New York, 1992.
  3. P. ButkoviÄ c, On the coe cients of the max-algebraic characteristic polynomial and equation, Proceedings of the Workshop on Max-algebra, Symposium of the International Federation of Automatic Control, Prague, 2001.
  4. P. ButkoviÄ c, L. Murÿtt, Calculating essential terms of a characteristic maxpolynomial, CEJOR 8 (2000) 237-246.
  5. R.A. Cuninghame-Green, Minimax algebra, in: Lecture Notes in Economics and Math. Systems, Vol. 166, Springer, Berlin, 1979.
  6. R.A. Cuninghame-Green, The characteristic maxpolynomial of a matrix, J. Math. Anal. Appl. 95 (1983) 110-116.
  7. R.A. Cuninghame-Green, Minimax algebra and applications, in: Advances in Imaging and Electron Physics, Vol. 90, Academic Press, New York, 1995, pp. 1-121.
  8. M. Dell'Amico, S. Martello, The k-cardinality assignment problem, Second International Colloquium on Graphs and Optimization, Leukerbad, 1994, Discrete Appl. Math. 76 (1-3) (1997) 103-121.
  9. S. Gaubert, Thà eorie des syst emes linà eaires dans les dio des, Th ese. Ecole des Mines de Paris, 1992.
  10. S. Gaubert, P. ButkoviÄ c, R.A. Cuninghame-Green, Minimal (max, +) realization of convex sequences, SIAM J. Control Optim. 36 (1) (1998) 137-147.
  11. M. Gondran, M. Minoux, L'indà ependance linà eaire dans les dio des, Bull. Direction à Etudes Rech. Sà er.
  12. C Math. Inform. 1 (1978) 67-90.
  13. M. Gondran, M. Minoux, Linear algebra of dio ds: a survey of recent results, Ann. Discrete Math. 19 (1984) 147-164.
  14. G.J. Olsder, C. Roos, Cramà er and Cayley-Hamilton in the max algebra, Linear Algebra Appl. 101 (1988) 87-108.
  15. U. Zimmermann, Linear and combinatorial optimization in ordered algebraic structures, Annals of Discrete Mathematics, Vol. 10, North-Holland, Amsterdam, 1981.