Modelling of syntactical processing in the cortex
2007, Biosystems
https://doi.org/10.1016/J.BIOSYSTEMS.2006.04.027Abstract
Probably the hardest test for a theory of brain function is the explanation of language processing in the human brain, in particular the interplay of syntax and semantics. Clearly such an explanation can only be very speculative, because there are essentially no animal models and it is hard to study detailed neural processing in humans. The approach presented in this paper uses well established basic neural mechanisms in a plausible global network architecture that is formulated essentially in terms of cortical areas and their intracortical and corticocortical interconnections. The neural implementation of this system shows that the comparatively intricate logical task of understanding semantico-syntactical structures can be mastered by a neural network architecture. The system presented also shows additional context awareness, in particular the model is able to correct ambiguous input to a certain degree, e.g. the input "bot show/lift green wall" with an artificial ambiguity between "show" and "lift" is correctly interpreted as "bot show green wall" since a wall is not liftable. Furthermore, the system is able to learn new object words during runtime.
References (72)
- Abeles, M., 1991. Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge University Press, Cambridge, UK.
- Abeles, M., Bergman, H., Margalit, E., Vaadia, E., 1993. Spatio- temporal firing patterns in frontal cortex of behaving monkeys. J. Neurophysiol. 70, 1629-1643.
- Ajjanagadde, V., Shastri, L., 1991. Rules and variables in neural nets. Neural Comput. 3, 121-134.
- Alon, N., Dewdney, A., Ott, T.J., 1991. Efficient simulation of finite automata by neural nets. J. ACM 38 (2), 495-514.
- Alquézar, R., Sanfeliu, A., 1996. An algebraic framework to represent finite state machines in single-layer recurrent networks. Neural Comput. 7 (5), 931-949.
- Arbib, M.A., Billard, A., Iacoboni, M., Oztop, E., 2000. Synthetic brain imaging: grasping, mirror neurons and imitation. Neural Networks 13 (8/9), 975-997.
- Arbib, M.A., Fagg, A.H., Grafton, S.T., 2002. Synthetic PET imaging for grasping: from primate neurophysiology to human behavior. In: Sommer, F.T., Wichert, A. (Eds.), Exploratory Analysis and Data Modelling in Functional Neuroimaging. MIT Press, Boston, MA. Arbib, M.A., 2003. The Handbook of Brain Theory and Neural Net- works, 2nd ed. MIT Press, Cambridge, MA.
- Bienenstock, E., 1996. Composition. In: Aertsen, A., Braitenberg, V. (Eds.), Brain Theory. Biological Basis and Computational Princi- ples. Elsevier, Amsterdam.
- Billard, A., Hayes, G., 1999. DRAMA, a connectionist architecture for control and learning in autonomous robots. Adapt. Behav. J. 7 (1), 35-64.
- Braitenberg, V., 1978. Cell assemblies in the cerebral cortex. In: Hein, R., Palm, G. (Eds.), Lecture Notes in Biomathematics (21). Theoretical Approaches to Complex Systems. Springer, Berlin/Heidelberg/New York.
- Braitenberg, V., 1977. On the Texture of Brains. Springer, Berlin/Heidelberg/New York.
- Braitenberg, V., Schüz, A., 1991. Anatomy of the Cortex. Statistics and Geometry. Springer-Verlag, Berlin.
- Brooks, R.A., Stein, L.A., 1994. Building brains for bodies. Auton. Robot. 1, 7-25.
- Dayan, P., Abbot, L.F., 2001. Theoretical Neuroscience. MIT Press, Cambridge, MA.
- Diesmann, M., Gewaltig, M.O., Aertsen, A., 1999. Stable propagation of synchronous spiking in cortical neural networks. Nature 402 (6761), 529-533.
- Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M., Reitboeck, H.J., 1988. Coherent oscillations: a mechanism of feature linking in the visual cortex? Biol. Cybern. 60, 121-130.
- Elman, J.L., 1990. Finding structure in time. Cognitive Sci. 14, 179-211.
- Fay, R., Kaufmann, U., Knoblauch, A., Markert, H., Palm, G., 2004. Combining visual attention, object recognition and associative information processing in a neurobotic system. In: Wermter, S., Palm, G., Elshaw, M. (Eds.), Biomimetic Neural Learning for Intelligent Robots. Springer, Berlin/Heidelberg/New York.
- Fodor, J.A., Pylyshyn, Z.W., 1988. Connectionism and cognitive archi- tecture: a critical analysis. Cognition 28, 3-71.
- Frasconi, P., Gori, M., Maggini, M., Soda, G., 1996. Representation of finite state automata in recurrent radial basis function networks. Mach. Learn. 23 (1), 5-32.
- Giles, L., Gori, M., 1998. Adaptive Processing of Sequences and Data Structures. Springer, Heidelberg/New York.
- Giles, C.L., Omlin, Ch.W., 1993. Extraction, insertion and refinement of symbolic rules in dynamically driven recurrent networks. Con- nect. Sci. 5, 307-337.
- Goonatikale, S., Khebbal, S., 1995. Intelligent Hybrid Systems. John Wiley and Sons Ltd.
- Gori, M., Maggini, M., Soda, G., 1995. Learning Regular Grammars From Noisy Examples Using Recurrent Neural Networks Techni- cal Report. Dipartimento di Sistemi e Informatica, Universita di Firenze.
- Gori, M., Küchler, A., Sperduti, A., 1999. On the implementation of frontier-to-root tree automata in recursive neural networks. IEEE Trans. Neural Networks 10 (6), 1305-1314.
- Grossberg, S., Pessoa, L., 1998. Texture segregation, surface represen- tation, and figure-ground separation. Vision Res. 38, 2657-2684.
- Harnad, S., 1990. The symbol grounding problem. Physica D 42, 335-346.
- Hebb, D.O., 1949. The Organization of Behavior. A Neuropsycholog- ical Theory. Wiley, New York.
- Hopcroft, J., Ullman, J., 1969. Formal Languages and their Relation to Automata. Addison-Wesley, Reading, MA.
- Horne, B.G., Hush, D.R., 1996. Bounds on the complexity of recurrent neural network implementations of finite state machines. Neural Networks 9 (2), 243-252.
- Horwitz, B., Friston, K.J., Taylor, J.G., 2000. Neural modeling and functional brain imaging: an overview. Neural Networks 13, 829-846.
- Ikegaya, Y., Aaron, G., Cossart, R., Aronov, D., Lampl, I., Ferster, D., Yuste, R., 2004. Synfire chains and cortical songs: temporal modules of cortical activity. Science 304, 559-564.
- Knoblauch, A., 2003. Synchronization and Pattern Separation in Spik- ing Associative Memory and Visual Cortical Areas. PhD Thesis. Department of Neural Information Processing, University of Ulm, Germany.
- Knoblauch, A., Palm, G., 2001. Pattern separation and synchronization in spiking associative memories and visual areas. Neural Networks 14, 763-780.
- Knoblauch, A., Palm, G., 2002. Scene segmentation by spike syn- chronization in reciprocally connected visual areas. II: Global assemblies and synchronization on larger space and time scales. Biol. Cybern. 87 (3), 168-184.
- Knoblauch, A., Fay, R., Kaufmann, U., Markert, H., Palm, G., 2004. Associating words to visually recognized objects. In: Coradeschi, S., Saffiotti, A. (Eds.), Anchoring Symbols to Sensor Data. Papers from the AAAI Workshop. Technical Report WS-04-03. AAAI Press, Menlo Park, CA.
- Knoblauch, A., Markert, H., Palm, G., 2005. An associative corti- cal model of language understanding and action planning. In: Mira, J., Alvarez, J.R. (Eds.), Artificial Intelligence and Knowl- edge Engineering Applications: A Bioinspired Approach. Springer, Berlin/Heidelberg/New York.
- Krichmar, J.L., Edelman, G., 2002. Machine psychology: autonomous behavior, perceptual categorization and conditioning in a brain- based device. Cereb. Cortex 12 (8), 818-830.
- Lapicque, L., 1907. Recherches quantitatives sur l'excitation electrique des nerfs traitee comme une polarization. J. Physiol. Pathol. Gen. 9, 620-635.
- Lin, L., Osan, R., Tsien, J.Z., 2006. Organizing principles of real-time memory encoding: neural clique assemblies and universal neural codes. Trends Neurosci. 29 (1), 48-57.
- Maass, W., Sontag, E., 1999. Analog neural nets with gaussian or other common noise distribution cannot recognize arbitrary regular languages. Neural Comput. 11, 771-782.
- Markert, H., Knoblauch, A., Palm, G., 2005a. Associative language processing in cortical areas. In: Proceedings of the IEEE SMC UK-RI Chapter Conference 2005 on Applied Cybernetics.
- Markert, H., Knoblauch, A., Palm, G., 2005b. Detecting sequences and understanding language with neural associative memories and cell assemblies. In: Wermter, S., Palm, G., Elshaw, M. (Eds.), Biomimetic Neural Learning for Intelligent Robots. Springer, Hei- delberg/New York.
- Marr, D., 1982. Vision. W.H. Freeman, New York.
- McKinstry, J.L., Edelman, G.M., Kirchmar, J.L., 2006. A cerebellar model for predictive motor control tested in a brain-based device. Proc. Natl. Acad. Sci. U.S.A. 103, 3387-3392.
- Miikkulainen, R., Bijwaard, D., 1994. Parsing embedded clauses with distributed neural networks. In: Proceedings of the 12th National Conference on AI (AAAI'94). AAAI Press/MIT Press, Menlo Park, CA.
- Nilsson, N.J., 1998. Artificial Intelligence: A New Synthesis. Morgan Kaufmann, San Francisco.
- O'Reilly, R.C., Braver, T.S., Cohen, J.D., 1999. A biologically based computational model of working memory. In: Miyake, A., Shah, P. (Eds.), Models of Working Memory: Mechanisms of Active Main- tenance and Executive Control. Cambridge University Press, New York.
- Palm, G., 1980. On associative memories. Biol. Cybern. 36, 19- 31. Palm, G., 1982a. Neural Assemblies. An Alternative Approach to Arti- ficial Intelligence. Springer, Berlin.
- Palm, G., 1982b. Rules for synaptic changes and their relevance for the storage of information in the brain. Cybern. Syst. Res..
- Palm, G., 1986. Associative networks and cell assemblies. In: Palm, G., Aertsen, A. (Eds.), Brain Theory. Springer, Berlin/Heidelberg.
- Palm, G., 1987. Computing with neural networks. Science 235, 1227-1228.
- Palm, G., 1990a. Cell assemblies as a guideline for brain research. Concepts Neurosci. 1, 133-148.
- Palm, G., 1990. Local rules for synaptic modification in neural net- works. J. Comput. Neurosci.
- Palm, G., 1991. Memory capacities of local rules for synaptic modification. A comparative review. Concepts Neurosci. 2, 97- 128. Palm, G., 1992. On the information storage capacity of local learning. Neural Comput. 4, 703-711.
- Palm, G., Sommer, F.T., 1992. Information capacity in recurrent McCulloch-Pitts networks with sparsely coded memory states. Network 3, 177-186.
- Pulvermüller, F., 1999. Words in the brain's language. Behav. Brain Sci. 22, 253-336.
- Pulvermüller, F., 2002. The Neuroscience of Language: On Brain Circuits of Words and Serial Order. Cambridge University Press, Cambridge, UK.
- Pulvermüller, F., 2003. Sequence detectors as a basis of grammar in the brain. Theory Biosci. 122, 87-103.
- Rabiner, L., 1989. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77, 257- 285.
- Rabiner, L., Juang, B.H., 1993. Fundamentals of Speech Recognition. Prentice Hall, Englewood Cliffs, NJ.
- Roy, D., 2002. Learning visually grounded words and syntax for a scene description task. Comput. Speech Lang. 16 (3), 353- 385.
- Rumelhart, D., McClelland, J., 1986. Parallel Distributed Processing. MIT Press, Cambridge, MA.
- Shastri, L., Ajjanagadde, V., 1993. From simple associations to system- atic reasoning: a connectionistic representation of rules, variables and dynamic bindings. Behav. Brain Sci. 16 (3), 417-494.
- Siegelmann, H.T., Giles, C.L., 1997. The complexity of language recognition by neural networks. Neurocomputing 15, 327- 345.
- Singer, W., Gray, C.M., 1995. Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555- 586.
- Somers, D.C., Nelson, S.B., Sur, M., 1995. An emergent model of ori- entation selectivity in cat visual cortical simple cells. J. Neurosci. 15, 5448-5465.
- Steels, L., Brooks, R., 1995. The Artificial Life Route to Artificial Intel- ligence: Building Embodied, Situated Agents. Erlbaum, Hillsdale, NJ.
- Sun, R., Bookman, L.A., 1995. Computational Architectures Inte- grating Neural and Symbolic Processing. Kluwer Academic Publishers.
- Talmy, L., 2000. Toward a Cognitive Semantics. vol. I: Conceptual Structuring Systems. MIT Press, Cambridge, MA. von der Malsburg, C., 1986. Am I thinking assemblies? In: Palm, G., Aertsen, A. (Eds.), Brain Theory. Springer, Berlin/ Heidelberg.
- Wermter, S., 1995. Hybrid Connectionist Natural Language Process- ing. Chapman and Hall, London.
- Willshaw, D.J., Buneman, O.P., Longuet-Higgins, H.C., 1969. Non- holographic associative memory. Nature 222, 960-962.