Academia.eduAcademia.edu

Outline

Crystal structure of the CorA Mg2+ transporter

2006, Nature

https://doi.org/10.1038/NATURE04642

Abstract

The magnesium ion, Mg 21 , is essential for myriad biochemical processes and remains the only major biological ion whose transport mechanisms remain unknown. The CorA family of magnesium transporters is the primary Mg 21 uptake system of most prokaryotes 1-3 and a functional homologue of the eukaryotic mitochondrial magnesium transporter 4 . Here we determine crystal structures of the full-length Thermotoga maritima CorA in an apparent closed state and its isolated cytoplasmic domain at 3.9 Å and 1.85 Å resolution, respectively. The transporter is a funnelshaped homopentamer with two transmembrane helices per monomer. The channel is formed by an inner group of five helices and putatively gated by bulky hydrophobic residues. The large cytoplasmic domain forms a funnel whose wide mouth points into the cell and whose walls are formed by five long helices that are extensions of the transmembrane helices. The cytoplasmic neck of the pore is surrounded, on the outside of the funnel, by a ring of highly conserved positively charged residues. Two negatively charged helices in the cytoplasmic domain extend back towards the membrane on the outside of the funnel and abut the ring of positive charge. An apparent Mg 21 ion was bound between monomers at a conserved site in the cytoplasmic domain, suggesting a mechanism to link gating of the pore to the intracellular concentration of Mg 21 .

References (25)

  1. Nelson, D. L. & Kennedy, E. P. Magnesium transport in Escherichia coli. Inhibition by cobaltous ion. J. Biol. Chem. 246, 3042--3049 (1971).
  2. Hmiel, S. P., Snavely, M. D., Miller, C. G. & Maguire, M. E. Magnesium transport in Salmonella typhimurium: Characterization of magnesium influx and cloning of a transport gene. J. Bacteriol. 168, 1444--1450 (1986).
  3. Bui, D. M., Gregan, J., Jarosch, E., Ragnini, A. & Schweyen, R. J. The bacterial magnesium transporter CorA can functionally substitute for its putative homologue Mrs2p in the yeast inner mitochondrial membrane. J. Biol. Chem. 274, 20438--20443 (1999).
  4. Kehres, D. G. & Maguire, M. E. Structure, properties and regulation of magnesium transport proteins. Biometals 15, 261--270 (2002).
  5. Kehres, D. G., Lawyer, C. H. & Maguire, M. E. The CorA magnesium transporter gene family. Microb. Compar. Genom. 43, 151--169 (1998).
  6. Worlock, A. J. & Smith, R. L. ZntB is a novel Zn 2þ transporter in Salmonella enterica serovar Typhimurium. J. Bacteriol. 184, 4369--4373 (2002).
  7. Gardner, R. C. Genes for magnesium transport. Curr. Opin. Plant Biol. 6, 263--267 (2003).
  8. Cordes, F. S., Bright, J. N. & Sansom, M. S. Proline-induced distortions of transmembrane helices. J. Mol. Biol. 323, 951--960 (2002).
  9. Tieleman, D. P., Shrivastava, I. H., Ulmschneider, M. R. & Sansom, M. S. Proline-induced hinges in transmembrane helices: possible roles in ion channel gating. Proteins 44, 63--72 (2001).
  10. Knoop, V., Groth-Malonek, M., Gebert, M., Eifler, K. & Weyand, K. Transport of magnesium and other divalent cations: evolution of the 2-TM-GxN proteins in the MIT superfamily. Mol. Genet. Genom. 274, 205--216 (2005).
  11. Doyle, D. A. Molecular insights into ion channel function. Mol. Membr. Biol. 21, 221--225 (2004).
  12. Roux, B. & MacKinnon, R. The cavity and pore helices in the KcsA K þ channel: electrostatic stabilization of monovalent cations. Science 285, 100--102 (1999).
  13. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K þ conduction and selectivity. Science 280, 69--77 (1998).
  14. Kuo, A. et al. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300, 1922--1926 (2003).
  15. Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T. & Rees, D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: A gated mechanosensitive ion channel. Science 282, 2220--2226 (1998).
  16. Miyazawa, A., Fujiyoshi, Y. & Unwin, N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 423, 949--955 (2003).
  17. MacKinnon, R. Potassium channels and the atomic basis for selective ion conduction. Biosci. Rep. 24, 75--100 (2004).
  18. Maguire, M. E. & Cowan, J. A. Mg 2þ chemistry and biochemistry. Biometals 15, 203--210 (2002).
  19. Snavely, M. D., Florer, J. B., Miller, C. G. & Maguire, M. E. Magnesium transport in Salmonella typhimurium: 28 Mg 2þ transport by the CorA, MgtA, and MgtB systems. J. Bacteriol. 171, 4761--4766 (1989).
  20. Kucharski, L. M., Lubbe, W. J. & Maguire, M. E. Cation hexaammines are selective and potent inhibitors of the CorA magnesium transport system. J. Biol. Chem. 275, 16767--16773 (2000).
  21. Szegedy, M. A. & Maguire, M. E. The CorA Mg 2þ transport protein of Salmonella typhimurium. Mutagenesis of conserved residues in the second membrane domain. J. Biol. Chem. 274, 36973--36979 (1999).
  22. Langosch, D., Thomas, L. & Betz, H. Conserved quaternary structure of ligand- gated ion channels: the postsynaptic glycine receptor is a pentamer. Proc. Natl Acad. Sci. USA 85, 7394--7398 (1988).
  23. Lester, H. A. The permeation pathway of neurotransmitter-gated ion channels. Annu. Rev. Biophys. Biomol. Struct. 21, 267--292 (1992).
  24. Delano, W. L. PyMOL khttp://pymol.sourceforge.net/l (cited 19 October 2005).
  25. Korolev, S. et al. The crystal structure of spermidine synthase with a multisubstrate adduct inhibitor. Nature Struct. Biol. 9, 27--31 (2002).