Modeling a Probabilistic Ontology for Maritime Domain Awareness
Abstract
Situational awareness and prediction are essential elements of information fusion. Both involve various types of uncertainty and require a sound automated inferential process. Probabilistic ontologies support uncertainty management in semantically aware systems, and facilitate modular, interoperable systems. This paper describes the process of developing a probabilistic ontology for a Maritime Domain Awareness application. The ontology was created to support identification of ships behaving suspiciously enough to be declared ships of interest. The original model was expanded in two ways: to provide reasons for declaring a ship as being of interest, and to include individual crew member associations. The latter is achieved by supporting inferences about a person's close relations, group associations, communications, and background influences to assess his likelihood of having terrorist links.
References (29)
- P. C. G. Costa, "Bayesian semantics for the semantic web," PhD, George Mason University, Jul. 2005, brazilian Air Force. [Online]. Available: http://digilib.gmu.edu:8080/xmlui/handle/1920/455
- Figure 5. MFrags changed/added in third iteration.
- R. N. Carvalho, P. C. G. Costa, K. B. Laskey, and K. Chang, "PROG- NOS: predictive situational awareness with probabilistic ontologies," in Proceedings of the 13th International Conference on Information Fusion, Edinburgh, UK, Jul. 2010.
- P. C. G. Costa, K. B. Laskey, and K. Chang, "PROGNOS: applying probabilistic ontologies to distributed predictive situation assessment in naval operations," in Proceedings of the Fourteenth International Command and Control Research and Technology Conference (ICCRTS 2009), Washington, D.C., USA, Jun. 2009. [Online]. Available: http://c4i.gmu.edu/ ∼ pcosta/pc publications.html#2009iccrts
- K. B. Laskey, "MEBN: a language for first-order bayesian knowledge bases," Artif. Intell., vol. 172, no. 2-3, pp. 140-178, 2008. [Online]. Available: http://portal.acm.org/citation.cfm?id=1327646
- P. Costa, K. Chang, K. Laskey, and R. N. Carvalho, "A multi-disciplinary approach to high level fusion in predictive situational awareness," in Proceedings of the 12th International Conference on Information Fusion, Seattle, Washington, USA, Jul. 2009, pp. 248-255.
- R. N. Carvalho, "Plausible in the semantic web using Multi- Entity bayesian networks -MEBN," M.Sc., University of Brasilia, Feb. 2008. [Online]. Available: http://hdl.handle.net/123456789/159
- P. C. G. Costa, K. B. Laskey, and K. J. Laskey, "PR-OWL: a bayesian framework for the semantic web," in Proceedings of the first workshop on Uncertainty Reasoning for the Semantic Web (URSW 2005), Galway, Ireland, Nov. 2005. [Online]. Available: http://digilib.gmu.edu:8080/xmlui/handle/1920/454
- P. C. Costa, K. B. Laskey, and K. J. Laskey, "PR-OWL: a bayesian ontology language for the semantic web," in Uncertainty Reasoning for the Semantic Web I: ISWC International Workshops, URSW 2005-2007, Revised Selected and Invited Papers. Springer-Verlag, 2008, pp. 88- 107. [Online]. Available: http://portal.acm.org/citation.cfm?id=1485733
- R. N. Carvalho, L. L. Santos, M. Ladeira, and P. C. G. Costa, "A GUI tool for plausible reasoning in the semantic web using MEBN," in Intelligent Systems Design and Applications, International Conference on. Los Alamitos, CA, USA: IEEE Computer Society, Oct. 2007, pp. 381-386.
- R. N. Carvalho, M. Ladeira, L. L. Santos, S. Matsumoto, and P. C. G. Costa, "A GUI tool for plausible reasoning in the semantic web using MEBN," in Innovative Applications in Data Mining, ser. Studies in Computational Intelligence. Nadia Nedjah, Luiza de Macedo Mourelle, Janusz Kacprzyk, 2009, vol. 169, pp. 17-45.
- P. Costa, M. Ladeira, R. N. Carvalho, K. Laskey, L. Santos, and S. Matsumoto, "A First-Order bayesian tool for probabilistic ontologies," in Proceedings of the 21st International Florida Artificial Intelligence Research Society Conference, May 2008, pp. 631-636.
- P. C. G. Costa, K. B. Laskey, and K. J. Laskey, "Probabilistic ontologies for efficient resource sharing in semantic web services," in Proceedings of the Second Workshop on Uncertainty Reasoning for the Semantic Web (URSW 2006), Athens, GA, USA, Nov. 2006. [Online]. Available: http://digilib.gmu.edu:8080/xmlui/handle/1920/1735
- K. Laskey, P. da Costa, E. Wright, and K. Laskey, "Probabilistic ontology for net-centric fusion," in Information Fusion, 2007 10th International Conference on, 2007, pp. 1-8.
- K. Laskey, P. Costa, and T. Janssen, "Probabilistic ontologies for knowledge fusion," in Information Fusion, 2008 11th International Conference on, 2008, pp. 1-8.
- R. N. Carvalho, K. B. Laskey, P. C. G. da Costa, M. Ladeira, L. L. Santos, and S. Matsumoto, "UnBBayes: modeling uncertainty for plausible reasoning in the semantic web," in Semantic Web, gang wu ed. INTECH, Jan. 2010, pp. 1-28. [Online]. Available: http://www.intechopen.com/books/show/title/semantic-web
- I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Devel- opment Process. Addison-Wesley Professional, Feb. 1999.
- K. B. Laskey and S. M. Mahoney, "Network engineering for agile belief network models," IEEE Trans. on Knowl. and Data Eng., vol. 12, no. 4, pp. 487-498, 2000. [Online]. Available: http://portal.acm.org/citation.cfm?id=628073
- K. B. Korb and A. E. Nicholson, Bayesian Artificial Intelligence, 1st ed. Chapman & Hall/CRC, Sep. 2003.
- C. Yang and T. Ng, "Terrorism and crime related weblog social network: Link, content analysis and information visualization," in Intelligence and Security Informatics, 2007 IEEE, 2007, pp. 55-58.
- T. Coffman and S. Marcus, "Pattern classification in social network analysis: a case study," in Aerospace Conference, 2004. Proceedings. 2004 IEEE, vol. 5, 2004, pp. 3162-3175 Vol.5.
- M. J. Dombroski and K. M. Carley, "NETEST: estimating a terrorist network's structure -graduate student best paper award, CASOS 2002 conference," Springer Netherlands, vol. 8, no. 3, pp. 235-241, 2002. [Online]. Available: http://dx.doi.org/10.1023/A:1020723730930
- V. Krebs, "Mapping networks of terrorist cells," 2001. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16. 2612
- L. Wagenhals and A. Levis, "Course of action analysis in a cultural landscape using influence nets," in Computational Intelligence in Secu- rity and Defense Applications, 2007. CISDA 2007. IEEE Symposium on, 2007, pp. 116-123.
- I. Moon and K. M. Carley, "Modeling and simulating terrorist networks in social and geospatial dimensions," IEEE Intelligent Systems, vol. 22, pp. 40-49, Sep. 2007, ACM ID: 1304517. [Online]. Available: http://dx.doi.org/10.1109/MIS.2007.91
- M. Sageman, Understanding Terror Networks. University of Pennsyl- vania Press, Apr. 2004.
- J. Moody, "Fighting a hydra: A note on the network embeddedness of the war on terror," Structure and Dynamics, vol. 1, no. 2, Jan. 2005. [Online]. Available: http://www.escholarship.org/uc/item/7x3881bs
- "World internet usage statistics news and world population stats," http://www.internetworldstats.com/stats.htm, 2010. [Online]. Available: http://www.internetworldstats.com/stats.htm
- "Wireless/Mobile statistics," http://www.mobileisgood.com/statistics.php, 2010. [Online]. Available: http://www.mobileisgood.com/statistics.php