Academia.eduAcademia.edu

Outline

A & B Model Approaches to Surface Operators and Toda Theories

2010, Arxiv preprint arXiv:1004.2025

https://doi.org/10.1007/JHEP08(2010)042

Abstract
sparkles

AI

This work explores the relationship between a class of 4d N = 2 SU(r + 1) quiver gauge theories and surface operators, utilizing topological string theory methods. By examining the B-model recursion techniques, we derive expressions for multiple surface operator insertions and their impact on the Nekrasov instanton partition function. Additionally, we propose modifications in the A-model partition function due to surface operator presence, leading to insights on their classification within conformal field theories.

References (83)

  1. L. F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa, and H. Verlinde, "Loop and surface operators in N = 2 gauge theory and Liouville modular geometry," JHEP 1001 (2010) 113, arXiv:0909.0945.
  2. S. Gukov, "Surface operators in N = 2 gauge theories and duality," talk at the ASC Workshop on interfaces and wall-crossings, Munich, December 4, 2009, http://www.theorie.physik.uni-muenchen.de/activities/workshops/archive 09/200911 30/ https://cast.itunes.uni-muenchen.de/vod/clips/a5fTeP1INl/quicktime/quicktime.mp4
  3. S. Gukov, "Surface operators in N = 2 gauge theories and instanton counting", talk at CERN, December 2009.
  4. D. Gaiotto, "N = 2 dualities," arXiv:0904.2715.
  5. L. F. Alday, D. Gaiotto, and Y. Tachikawa, "Liouville correlation functions from four-dimensional gauge theories," Lett. Math. Phys. 91 (2010) 167, arXiv:0906.3219.
  6. N. Wyllard, "A N -1 conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories," arXiv:0907.2189.
  7. R. Dijkgraaf and C. Vafa, "Toda theories, matrix models, topological strings, and N = 2 gauge systems," arXiv:0909.2453.
  8. N. Drukker, J. Gomis, T. Okuda, and J. Teschner, "Gauge theory loop operators and Liouville theory," arXiv:0909.1105;
  9. N. Drukker, D. Gaiotto and J. Gomis, "The virtue of defects in 4D gauge theories and 2D CFTs," arXiv:1003.1112;
  10. F. Passerini, "Gauge theory Wilson loops and conformal Toda field theory," arXiv:1003.1151.
  11. D. Gaiotto, "Surface operators in N = 2 4d gauge theories," arXiv:0911.1316.
  12. N. A. Nekrasov, "Seiberg-Witten prepotential from instanton counting," Adv. Theor. Math. Phys. 7 (2004) 831, hep-th/0206161;
  13. N. Nekrasov and A. Okounkov, "Seiberg-Witten theory and random partitions," hep-th/0306238.
  14. A. Iqbal and A.-K. Kashani-Poor, "SU(N) geometries and topological string amplitudes," Adv. Theor. Math. Phys. 10 (2006) 1-32, hep-th/0306032;
  15. T. J. Hollowood, A. Iqbal, and C. Vafa, "Matrix models, geometric engineering and elliptic genera," JHEP 03 (2008) 069, hep-th/0310272;
  16. T. Eguchi and H. Kanno, "Topological strings and Nekrasov's formulas," JHEP 12 (2003) 006, hep-th/0310235.
  17. M. Aganagic, A. Klemm, M. Mariño and C. Vafa, "The topological vertex," Commun. Math. Phys. 254 (2005) 425, hep-th/0305132;
  18. A. Iqbal, "All genus topological string amplitudes and 5-brane webs as Feynman diagrams," arXiv:hep-th/0207114.
  19. A. Iqbal, C. Kozçaz, and C. Vafa, "The refined topological vertex," JHEP 10 (2009) 069, hep-th/0701156.
  20. F. Benini, S. Benvenuti and Y. Tachikawa, "Webs of five-branes and N = 2 superconformal field theories," JHEP 0909 (2009) 052, arXiv:0906.0359.
  21. B. Eynard and N. Orantin, "Invariants of algebraic curves and topological expansion," Commun. Number Theory Phys. 1 (2007) 347, math-ph/0702045.
  22. M. Mariño, "Open string amplitudes and large order behavior in topological string theory," JHEP 0803 (2008) 060, hep-th/0612127.
  23. V. Bouchard, A. Klemm, M. Mariño and S. Pasquetti, "Remodeling the B-model," Commun. Math. Phys. 287 (2009) 117, arXiv:0709.1453.
  24. S. Gukov and E. Witten, "Gauge theory, ramification, and the geometric Langlands program," hep-th/0612073.
  25. J. Gomis and S. Matsuura, "Bubbling surface operators and S-duality," JHEP 0706 (2007) 025, arXiv:0704.1657;
  26. S. Gukov and E. Witten, "Rigid surface operators," arXiv:0804.1561.
  27. H. Awata and H. Kanno, "Instanton counting, Macdonald functions and the moduli space of D-branes," JHEP 0505 (2005) 039, hep-th/0502061;
  28. H. Awata and H. Kanno, "Refined BPS state counting from Nekrasov's formula and Macdonald functions," Int. J. Mod. Phys. A24 (2009) 2253, arXiv:0805.0191.
  29. M. Taki, "Refined topological vertex and instanton counting," JHEP 03 (2008) 048, arXiv:0710.1776.
  30. M. Aganagic and C. Vafa, "Mirror symmetry, D-branes and counting holomorphic discs," hep-th/0012041.
  31. M. Aganagic, A. Klemm and C. Vafa, "Disk instantons, mirror symmetry and the duality web," Z. Naturforsch. A 57, 1 (2002) hep-th/0105045.
  32. R. Schiappa and N. Wyllard, "An A r threesome: Matrix models, 2d CFTs and 4d N = 2 gauge theories," arXiv:0911.5337.
  33. M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño and C. Vafa, "Topological strings and integrable hierarchies," Commun. Math. Phys. 261 (2006) 451, hep-th/0312085.
  34. M. Aganagic, V. Bouchard and A. Klemm, "Topological strings and (almost) modular forms," Commun. Math. Phys. 277, 771 (2008) hep-th/0607100;
  35. V. Bouchard, A. Klemm, M. Marino and S. Pasquetti, "Topological open strings on orbifolds," arXiv:0807.0597.
  36. J. Kaneko, "Selberg integrals and hypergeometric functions associated with Jack polynomials," SIAM J. Math. Anal. 4 (1993) 1086.
  37. H. Itoyama and T. Oota, "Method of generating q-expansion coefficients for conformal block and N = 2 Nekrasov function by beta-deformed matrix model," arXiv:1003.2929;
  38. A. Mironov, A. Morozov and A. Morozov, "Matrix model version of AGT conjecture and generalized Selberg integrals," arXiv:1003.5752.
  39. A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, "Infinite conformal symmetry in two-dimensional quantum field theory," Nucl. Phys. B241 (1984) 333.
  40. Z. Bajnok, L. Palla and G. Takacs, "A 2 Toda theory in reduced WZNW framework and the representations of the W algebra," Nucl. Phys. B385 (1992) 329, hep-th/9206075;
  41. P. Bowcock and G. M. T. Watts, "Null vectors of the W 3 algebra," Phys. Lett. B297 (1992) 282, hep-th/9209105 .
  42. V. A. Fateev and A. V. Litvinov, "Correlation functions in conformal Toda field theory I," JHEP 11 (2007) 002, arXiv:0709.3806.
  43. P. Bouwknegt and K. Schoutens, "W symmetry in conformal field theory," Phys. Rept. 223 (1993) 183, hep-th/9210010.
  44. S. Kanno, Y. Matsuo, S. Shiba, and Y. Tachikawa, "N = 2 gauge theories and degenerate fields of Toda theory," arXiv:0911.4787.
  45. P. Bowcock and G. M. T. Watts, "Null vectors, 3-point and 4-point functions in conformal field theory," Theor. Math. Phys. 98 (1994) 350, hep-th/9309146.
  46. D. Gaiotto and J. Maldacena, "The gravity duals of N = 2 superconformal field theories," arXiv:0904.4466.
  47. B. Eynard and N. Orantin, "Algebraic methods in random matrices and enumerative geometry," arXiv:0811.3531.
  48. M. Mariño, R. Schiappa and M. Weiss, "Nonperturbative effects and the large-order behavior of matrix models and topological strings," Commun. Number Theory Phys. 2 (2008) 349, arXiv:0711.1954.
  49. O. Babelon, D. Bernard, and M. Talon, "Introduction to classical integrable systems," Cambridge University Press (2003).
  50. B. Eynard and M. Mariño, "A holomorphic and background independent partition function for matrix models and topological strings," arXiv:0810.4273
  51. L. Chekhov, B. Eynard and O. Marchal, "Topological expansion of the Bethe ansatz, and quantum algebraic geometry," arXiv:0911.1664.
  52. B. Eynard and O. Marchal, "Topological expansion of the Bethe ansatz, and non-commutative algebraic geometry," JHEP 0903 (2009) 094 arXiv:0809.3367.
  53. N. Nekrasov and S. Shatashvili, "Supersymmetric vacua and Bethe ansatz," Nucl. Phys. Proc. Suppl. 192-193 (2009) 91, arXiv:0901.4744;
  54. N. Nekrasov and S. Shatashvili, "Quantum integrability and supersymmetric vacua," Prog. Theor. Phys. Suppl. 177 (2009) 105, arXiv:0901.4748;
  55. N. Nekrasov and S. Shatashvili, "Quantization of integrable systems and four dimensional gauge theories," arXiv:0908.4052.
  56. N. Nekrasov and E. Witten, "The Omega deformation, branes, integrability, and Liouville theory," arXiv:1002.0888.
  57. G. Akemann, "Higher genus correlators for the Hermitian matrix model with multiple cuts," Nucl. Phys. B482, 403 (1996) hep-th/9606004.
  58. V. A. Fateev, A. V. Litvinov, A. Neveu and E. Onofri, "Differential equation for four-point correlation function in Liouville field theory and elliptic four-point conformal blocks," J. Phys. A42 (2009) 304011, arXiv:0902.1331.
  59. T. Eguchi and K. Maruyoshi, "Penner type matrix model and Seiberg-Witten theory," JHEP 1002 (2010) 022, arXiv:0911.4797.
  60. A. Iqbal and A. K. Kashani-Poor, "The vertex on a strip," Adv. Theor. Math. Phys. 10 (2006) 317, hep-th/0410174.
  61. D. Karp, C. C. Liu and M. Mariño, "The local Gromov-Witten invariants of configurations of rational curves," Geom. Topol. 10 (2006) 115, math/0506488.
  62. P. Su lkowski, "Crystal model for the closed topological vertex geometry," JHEP 0612 (2006) 030, hep-th/0606055.
  63. A. Okounkov, N. Reshetikhin and C. Vafa, "Quantum Calabi-Yau and classical crystals," hep-th/0309208.
  64. T. Dimofte and S. Gukov, "Refined, Motivic, and Quantum," Lett. Math. Phys. 91 (2010) 1, arXiv:0904.1420.
  65. J. Shiraishi, H. Kubo, H. Awata, and S. Odake, "A Quantum deformation of the Virasoro algebra and the Macdonald symmetric functions," Lett. Math. Phys. 38 (1996) 33, q-alg/9507034;
  66. H. Awata and Y. Yamada, "Five-dimensional AGT conjecture and the deformed Virasoro algebra," 0910.4431.
  67. H. Dorn and H. J. Otto, "Two and three point functions in Liouville theory," Nucl. Phys. B429 (1994) 375-388, hep-th/9403141;
  68. A. B. Zamolodchikov and A. B. Zamolodchikov, "Structure constants and conformal bootstrap in Liouville field theory," Nucl. Phys. B477 (1996) 577-605, hep-th/9506136;
  69. J. Teschner, "A lecture on the Liouville vertex operators," Int. J. Mod. Phys. A19S2 (2004) 436-458, hep-th/0303150.
  70. J. Teschner, "Nonrational conformal field theory," arXiv:0803.0919.
  71. J. A. Minahan and D. Nemeschansky, "An N = 2 superconformal fixed point with E 6 global symmetry," Nucl. Phys. B482 (1996) 142, hep-th/9608047.
  72. A. Gadde, L. Rastelli, S. S. Razamat and W. Yan, "The superconformal index of the E 6 SCFT," arXiv:1003.4244.
  73. N. Seiberg, "Five dimensional SUSY field theories, non-trivial fixed points and string dynamics," Phys. Lett. B 88 (1996) 753, hep-th/9608111.
  74. J. Kaneko, "q-Selberg integrals and Macdonald polynomials," Ann. Sci. École Norm. Sup. 29 (1996) 583.
  75. U. Bruzzo, F. Fucito, J. F. Morales and A. Tanzini, "Multi-instanton calculus and equivariant cohomology," JHEP 0305 (2003) 054, hep-th/0211108;
  76. F. Fucito, J. F. Morales and R. Poghossian, "Instantons on quivers and orientifolds," JHEP 10 (2004) 037, hep-th/0408090;
  77. S. Shadchin, "Cubic curves from instanton counting," JHEP 03 (2006) 046 hep-th/0511132.
  78. V. Alba and And. Morozov, "Check of AGT relation for conformal blocks on sphere," arXiv:0912.2535.
  79. A. Mironov and A. Morozov, "The power of Nekrasov functions," Phys. Lett. B680 (2009) 188, arXiv:0908.2190.
  80. N. Nekrasov, "Instanton partition functions and M-theory," Japan. J. Math. 4 (2009) 63.
  81. A. Mironov and A. Morozov, "On AGT relation in the case of U(3)," Nucl. Phys. B825 (2010) 1, arXiv:0908.2569.
  82. N. R. Constable, J. Erdmenger, Z. Guralnik and I. Kirsch, "Intersecting D3-branes and holography," Phys. Rev. D 68 (2003) 106007, hep-th/0211222.
  83. I. Kostov, "Matrix models as conformal field theories: genus expansion," arXiv:0912.2137.