Academia.eduAcademia.edu

Outline

A new class of entanglement measures

2001, Journal of Mathematical Physics

https://doi.org/10.1063/1.1398062

Abstract

We introduce new entanglement measures on the set of density operators on tensor product Hilbert spaces. These measures are based on the greatest cross norm on the tensor product of the sets of trace class operators on Hilbert space. We show that they satisfy the basic requirements on entanglement measures discussed in the literature, including convexity, invariance under local unitary operations and non-increase under local quantum operations and classical communication.

References (20)

  1. O. Rudolph, A Separability Criterion for Density Operators, J. Phys. A: Math. Gen. 33, 3951- 3955 (2000).
  2. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, and W.K. Wootters, Mixed-state entanglement and quantum error correction, Phys. Rev. A 54, 3824-3851 (1997).
  3. V. Vedral, M.B. Plenio, M.A. Rippin and P.L. Knight, Quantifying Entanglement, Phys. Rev. Lett. 78, 2275-2279 (1997).
  4. V. Vedral and M.B. Plenio, Entanglement measures and purification procedures, Phys. Rev. A57, 1619-1633 (1998).
  5. M.B. Plenio and V. Vedral, Teleportation, entanglement and thermodynamics in the quantum world, Contemp. Phys. 39, 431-446 (1998).
  6. M. Horodecki, P. Horodecki, and R. Horodecki, Limits for Entanglement Measures, Phys. Rev. Lett. 84, 2014-2017 (2000).
  7. G. Vidal, Entanglement monotones, Journ. Mod. Opt. 47, 355-376 (2000).
  8. M. Horodecki, P. Horodecki and R. Horodecki, Mixed-State Entanglement and Distillation: Is there a "Bound" Entanglement in Nature? Phys. Rev. Lett. 80, 5239-5242 (1998).
  9. C.H. Bennett, D.P. DiVincenzo, T. Mor, P.W. Shor, J.A. Smolin and B.M. Terhal, Unex- tendible Product Bases and Bound Entanglement, Phys. Rev. Lett. 82, 5385-5388 (1999).
  10. O. Rudolph, A uniqueness theorem for entanglement measures, J. Math. Phys. 42, 2507-2512 (2001).
  11. K. Kraus, States, Effects and Operations (Springer, Berlin, 1983).
  12. E.B. Davies, Quantum Theory of Open Systems (Academic, London, 1976).
  13. K. Kraus, General State Changes in Quantum Theory, Ann. Phys. (N.Y.) 64, 311-335 (1971).
  14. P. Busch, M. Grabowski and P.J. Lahti, Operational Quantum Physics. Lecture Notes in Physics m31 (Springer, Berlin, 1995).
  15. P. Busch, P.J. Lahti and P. Mittelstaedt, The Quantum Theory of Measurement. Lecture Notes in Physics m2 (Springer, Berlin, 1996), 2nd ed.
  16. M.J. Donald, M. Horodecki and O. Rudolph, The uniqueness theorem for entanglement mea- sures, quant-ph/0105017.
  17. M.-D. Choi, Completely positive linear maps on complex matrices. Lin. Alg. Appl. 10, 285- 290 (1975).
  18. R. Schatten, Norm Ideals of Completely Continuous Operators (Springer, Berlin, 1970), 2nd ed.
  19. N.E. Wegge-Olsen, K-Theory and C * -algebras (Oxford UP, Oxford, 1993).
  20. R.V. Kadison and J.R. Ringrose, Fundamentals of the Theory of Operator Algebras I & II (Academic, Orlando, 1983 & 1986).