Academia.eduAcademia.edu

Outline

FAULT DIAGNOSIS FOR LOCAL AREA NETWORK ENVIRONMENTS

Abstract

Particular attention has been given to propose systems to solve network management tasks, especially for the fault diagnosis and performance management. The construction of such systems requires an intense process of modeling the network environment through interviews with experts in the network management area as well as the use of Artificial Intelligence techniques. The aim of this paper is to specify Problem Solving Methods for the diagnosis of communication network faults. We claim that the AI approach called Model-based diagnosis provides a foundation for exchanging behavioral, structural and control information between the subtasks of such complex systems. We also show what are the main aspects to be considered when constructing such systems, namely: how to build network models (manually or automatically); how to model an appropriate problem solving method to each class of network faults; how to identify the type of interaction between the diagnosis system and a network status gathering system, such as a management platform; how to construct the communication interfaces among several systems, etc. Finally, this work presents two prototypes of diagnosis systems: one for configuration faults and another for communication faults of conventional TCP/IP local area networks. *

References (23)

  1. Abu-Hanna, A. Multiple Domain Models in Diagnostic Reasoning. Amsterdam, 1994. 169p. Thesis (Ph.D.), University of Amsterdam.
  2. Artola, E. S. e Tarouco, L. M. R. Um Sistema Especialista para Gerência Pró-Ativa Remota. In: SBRC - Simpósio Brasileiro de Redes de Computadores, 14 o , Fortaleza, 20-23 maio, 1996. Anais. Fortaleza, SBC, 1996, p. 118-139.
  3. Benjamins, V. R. Problem Solving Methods for Diagnosis. Amsterdam, 1993. 172p. Thesis (Ph.D.), University of Amsterdam.
  4. Bouloutas, A.; Calo, S.; Finkel, A. Alarm Correlation and Fault Identification in Communication Networks. IEEE Transactions on Communications, v.42, p.523-533, 1994.
  5. Breuker, J.; van de Velde, W.. CommonKADS Library for Expertise Modelling Reusable problem solving components. IOS Press, Amsterdam, 1994.
  6. Chandrasekaran, B. Generic Tasks in Knowledge-Based Reasoning: High-Level Building Blocks for Expert System Design. IEEE Expert, vol. 1, no. 3, p. 23-30, Fall 1986.
  7. De Kleer, J. and Willians B. C.. Diagnosing Multiple Faults. Artificial Intelligence 32 (1987) 97 -130.
  8. Deng, R. H.; Lazar, A.; Wang, W. A Probabilistic Approach to Fault Diagnosis in Linear Lightwave Networks. IEEE JSAC, v. 11, p. 1438-1449, 1993.
  9. Dreo, G.; Valta, R. Using master tickets as a storage for problem solving expertise. In: ISINM - International Symposium on Integrated Network Management, IV, Proceedings, Chapman & Hall, p. 290, 1995.
  10. Frohlich, P.; Jobmann, K.; Nejdl, W.; Wietgrefe, H. Model-based alarm correlation in cellular phone networks. In: Fifth International Symposium on Modelling, Analysis and Simulation of Computers and Telecommunications Systems, 1997. Proceedings, p. 197-204, 1997.
  11. Frontini, M.; Griffin, J.; Towers, S. A Knowledge-Based System for Fault Localization in Wide Area Networks. In: ISINM -International Symposium on Integrated Network Management, II, 1991.
  12. Proceedings, Elsevier, North-Holland, p. 519-530, 1991.
  13. Katzela, I.; Schwartz, M. Schemes for Fault Identification in Communication Networks. IEEE/ACM Transactions on Networking, Dec., 1995. http://www.ctr.columbia.edu/~irene/publications.html [obtained 01 Feb 1997].
  14. Kehl, W.; Hopfmuller, H.; Koussev, T., Newstead, M. Application of Model-Based Reasoning to the Maintenance of Telecommunication Networks. In: 5 th International Conference, IEA/AIE. Proceedings, Poderbon, Germany, June, 1992.
  15. Lemos, M. Um método de resolução de problema reusável para diagnóstico automático no domínio de gerenciamento de falhas em redes de comunicação. 16 o Simpósio Brasileiro de Redes de Computadores - SBRC98. Page. 106-121. 1998
  16. Lewis, L. A case based reasoning approach to the resolution of faults in communication networks. In: ISINM -International Symposium on Integrated Network Management, III, 1993. Proceedings, Elsevier, North-Holland, 1993.
  17. Brugnoni S., Bruno G., Manione R., Montariolo E., Paschettra E., and Sisto, L. (1993). An Expert System for Real Time Fault Diagnosis of the Italian Telecommunications Network. In: Third International Symposium on Integrated Network Management, San Francisco 18-23 April, 1993. The Netherlands, North Holland, 617-628.
  18. McDermott, J. Preliminary steps toward a taxonomy of problem-solving methods. In: Marcus, S. (editor), Automating Knowledge Acquisition for Expert Systems, p. 225-255. Boston, Kluwer, 1988.
  19. Nunes, C. M. Um Discriminador Inteligente de Eventos de Rede para o ambiente CINEMA. Porto Alegre, 1997, 143p. Dissertação ( Mestrado) -CPGCC, UFRGS.
  20. Steels, L. Components of expertise. AI Magazine, v. 11, p. 29-49, Summer 1990.
  21. Wietgrefe, H.; Tuchs, K. D.; Jobmann, K.; Carls, G.; Frohlich, P.; Nejdl, W.; Steinfeld, S. Using Neural Networks for Alarm Correlation in Cellular Phone Networks. In: IWANNT'97 -International Workshop on Applications of Neural Networks to Telecommunications, Melbourne, Australia, June, 1997. http://www.kbs.uni-hannover.de/ [obtained 15 Jul. 1997].
  22. Davis & Hamscher, 88] Model-based reasoning: Troubleshooting. In Shrobe, H. E., editor. Exploring Artificial Intelligence, pages 297-346. San Mateo, California, Morgan Kaufmann.
  23. Lemos, M; Barros, L; Bernal, V; Wainer, J. Building Reusable Knowledge Models for the Communication Networks Domain. In Fourth Australian Workshop on Knowledge Acquisition, Sidney 5-6 December 1999.