Multi-Modal Bat Algorithm with Improved Search (MMBAIS)
2017, Journal of Computational Science
https://doi.org/10.1016/J.JOCS.2016.12.003Abstract
Bat Algorithm (BA), is a relatively new nature inspired metaheuristic algorithm, which works on the echolocation capabilities of micro-bats. Although being highly efficient, it suffers from pre-mature convergence. To overcome this limitation, this paper proposes a multimodal variant of BA, called Multi-Modal Bat Algorithm (MMBA), which includes the foraging behaviour of bats. The standard BA exhibits a random movement for catching its prey. This work also proposes an enhancement to these exploration capabilities of bat, called Bat Algorithm with Improved Search (BAIS). Each of these variants is tested for its efficacy against BA over 30 benchmark functions. An integration of both these modifications, the Multi-Modal Bat Algorithm with Improved Search (MMBAIS), is also subsequently compared against the same 30 benchmark functions. Results established the superiority of MMBAIS over BA. Experimental comparison of MMBAIS with a recent variant of BA also revealed the efficiency of MMBAIS.
References (31)
- X.S. Yang, Nature-Inspired Metaheuristic Algorithms, second ed., Luniver Press, UK, 2010.
- Sean Luke, 2013, Essentials of Metaheuristics, Lulu, second ed., available at http://cs.gmu.edu/⇠sean/book/metaheuristics/
- J. Kennedy, R.C. Eberhart, Swarm Intelligence, Morgan Kaufmann, California, 2001.
- X.S. Yang, Swarm Intelligence Based Algorithms: A Critical Analysis, Evolutionary Intelligence 7, (2014) 17-28.
- J. Kennedy, R.C. Eberhart, Particle swarm optimization, Proc. IEEE Int. Conf. Neural Networks, Australia, (1995) 1942-1948.
- M. Dorigo, G.D. Caro, The ant colony optimization meta-heuristic, in: D. Corne, M. Dorigo, F. Glover (Eds.), New ideas in optimization, McGraw-Hill, UK, 1999.
- X.S. Yang, Firefly algorithms for multimodal optimization, in: O. Watanabe, T. Zeugmann (Eds.) Stochastic Algorithms: Foundations and Appplications, SAGA 2009, Lecture Notes in Computer Science, 5792, Springer- Verlag, Berlin, 2009, pp. 169-178.
- X.S. Yang, A New Metaheuristic Bat-Inspired Algorithm, in: Nature Inspired Cooperative Strategies for Optimization (NISCO 2010) (Eds. J. R. Gonzalez et al.), Studies in Computational Intelligence, Springer Berlin, 284, Springer, 65-74 (2010).
- O. Hasançebi, T. Teke, O. Pekcan, A bat-inspired algorithm for structural optimization, Computers and Structures 128 (2013) 77-90.
- I. Fister, et al., Planning the sports training sessions with the bat algorithm, Neurocomputing 149, Elsevier, (2015) 993-1002.
- S. Biswal, A.K. Barisal, A. Behera, T. Prakash, Optimal power dispatch using BAT algorithm, in: Int. Conference on Energy Efficient Technologies for Sustainability (ICEETS), Nagercoil; 10-12 April 2013, IEEE, pp. 1018-23.
- N.S. Jaddi et al., Multi-population cooperative bat algorithm-based optimization of artificial neural network model, Information Sciences 294, Elsevier, (2015) 628-644.
- D. Rodrigues et al., A wrapper approach for feature selection based on Bat Algorithm and Optimum-Path Forest, Expert Systems with Applications 41, Elsevier, (2014) 2250-2258.
- Md. Wasi Ul Kabir, Md. Shafiul Alam, Bat Algorithm with Self-adaptive Mutation: A Comparative Study on Numerical Optimization Problems, International Journal of Computer Applications 100 (2014) 7-13.
- S. Yilmaz, E.U. Kucuksille, A new modification approach on bat algorithm for solving optimisation problems, Applied Soft Computing 28, Elsevier, (2015) 259-275.
- L. Jun, L. Liheng, W. Xianyi, A double-subpopulation variant of the bat algorithm, Applied Mathematics and Computation 263, Elsevier, (2015) 361-377.
- X.-B. Meng, X.Z. Gao, Y. Liu, H. Zhang, A novel bat algorithm with habitat selection and Doppler effect in echoes for optimization, Expert Systems with Applications 42, Elsevier, (2015) 6350-6364.
- A.R. Jordehi, Chaotic bat swarm optimisation (CBSO), Applied Soft Computing 26, Elsevier, (2015) 523-530.
- A.H. Gandomi, X.S. Yang, Chaotic bat algorithm, Journal of Computational Science 5, Elsevier, (2014) 224-232.
- J. Xie, Y. Zhou, H. Chen , A Novel Bat Algorithm Based on Differential Operator and Lévy Flights Trajectory, Computational Intelligence and Neuroscience, vol. 2013, Article ID 453812, 13 pages, 2013.
- G. Wang, L. Guo, A Novel Hybrid Bat Algorithm with Harmony Search for Global Numerical Optimization, Journal of Applied Mathematics, vol. 2013, Article ID 696491, 21 pages, 2013.
- J. Wanga, X. Fana, A. Zhaoa, M. Yangb, A Hybrid Bat Algorithm for Process Planning Problem, IFAC- PapersOnLine 48, Elsevier, (2015), 1708-1703.
- I. Fister Jr., I. Fister, X.S. Yang, S. Fong, Y. Zhuang, Bat algorithm: Recent advances, 2014 IEEE 15th International Symposium on Computational Intelligence and Informatics (CINTI), (2014) pp. 163-167.
- P.H. Raven, G.B. Jhonson, Behavioral Ecology, in: Biology. 6th. ed., Tata McGraw-Hill, 2002, pp. 553-568.
- I. Aihara, E. Fujioka, S. Hiryu, Qualitative and Quantitative Analyses of the Echolocation Strategies of Bats on the Basis of Mathematical Modelling and Laboratory Experiments. PLoS ONE 8(7): e68635, (2013). doi:10.1371/journal.pone.0068635
- R.H. MacArthur, E.R. Pianka, On Optimal Use of a Patchy Environment,The American Naturalist 100 (1966) 603- 609.
- G.H. Pyke, Optimal Foraging Theory: A Critical Review, Annual Review of Ecology and Systematics 15 (1984) 523- 575.
- M. Jamil, X.S. Yang, A literature survey of benchmark functions for global optimization problems, Int. Journal of Mathematical Modelling and Numerical Optimisation 4 (2013) 150-194. DOI: 10.1504/IJMMNO.2013.055204
- E.P. Adorio, MVF -Multivariate Test Functions Library in C for unconstrained global optimization, 2005, http://www.geocities.ws/eadorio/mvf.pdf.
- M. Molga, C. Smutnicki, Test functions for optimization needs, 2005, http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf.
- X. Yu, M. Gen, Introduction to Evolutionary Algorithms, Springer-Verlag, London, UK, 2010.