Computational evolution of decision-making strategies
Abstract
Most research on adaptive decision-making takes a strategy-first approach, proposing a method of solving a problem and then examining whether it can be implemented in the brain and in what environments it succeeds. We present a method for studying strategy development based on computational evolution that takes the opposite approach, allowing strategies to develop in response to the decision-making environment via Darwinian evolution. We apply this approach to a dynamic decision-making problem where artificial agents make decisions about the source of incoming information. In doing so, we show that the complexity of the brains and strategies of evolved agents are a function of the environment in which they develop. More difficult environments lead to larger brains and more information use, resulting in strategies resembling a sequential sampling approach. Less difficult environments drive evolution toward smaller brains and less information use, resulting in simpler heuristic-like s...
References (16)
- Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Co- hen, J. D. (2006). The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychological Review, 113(4), 700-765.
- Brandstätter, E., Gigerenzer, G., & Hertwig, R. (2006). The priority heuristic: Making choices without trade-offs. Psy- chological Review, 113(2), 409-432.
- Briscoe, E., & Feldman, J. (2011). Conceptual complexity and the bias/variance tradeoff. Cognition, 118(1), 2-16.
- Dougherty, M. R., Franco-Watkins, A. M., & Thomas, R. (2008). Psychological plausibility of the theory of prob- abilistic mental models and the fast and frugal heuristics. Psychological Review, 115(1), 199-211.
- Edlund, J. A., Chaumont, N., Hintze, A., Koch, C., Tononi, G., & Adami, C. (2011). Integrated information increases with fitness in the evolution of animats. PLoS Computa- tional Biology, 7(10), e1002236.
- Gigerenzer, G., & Brighton, H. (2009). Homo heuristicus: Why biased minds make better inferences. Topics in Cog- nitive Science, 1(1), 107-143.
- Gigerenzer, G., & Todd, P. M. (1999). Simple heuristics that make us smart. New York, NY: Oxford University Press.
- Griffiths, T. L., & Tenenbaum, J. B. (2006). Optimal predic- tions in everyday cognition. Psychological Science, 17(9), 767-773.
- Isler, K., & Van Schaik, C. P. (2006). Metabolic costs of brain size evolution. Biology Letters, 2(4), 557-560.
- Kuzawa, C. W., Chugani, H. T., Grossman, L. I., Lipovich, L., Muzik, O., Hof, P. R., . . . Lange, N. (2014). Metabolic costs and evolutionary implications of human brain devel- opment. Proceedings of the National Academy of Sciences, 111(36), 13010-13015.
- Laughlin, S. B., van Steveninck, R. R. d. R., & Anderson, J. C. (1998). The metabolic cost of neural information. Nature Neuroscience, 1(1), 36-41.
- Link, S., & Heath, R. (1975). A sequential theory of psycho- logical discrimination. Psychometrika, 40(1), 77-105.
- Marstaller, L., Hintze, A., & Adami, C. (2013). The evolu- tion of representation in simple cognitive networks. Neural Computation, 25(8), 2079-2107.
- Olson, R. S., Hintze, A., Dyer, F. C., Knoester, D. B., & Adami, C. (2013). Predator confusion is sufficient to evolve swarming behaviour. Journal of The Royal Society Interface, 10(85), 20130305.
- Ratcliff, R. (1978). A theory of memory retrieval. Psycho- logical Review, 85(2), 59-108.
- Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton, NJ: Princeton University Press.