Academia.eduAcademia.edu

Outline

Degree Sums, Connectivity and Dominating Cycles in Graphs

2001, Graphs and Combinatorics

https://doi.org/10.1007/PL00013415

Abstract

Let G be a graph of order n with connectivity j ! 3 and let a be the independence number of G. Set r 4 G minf P 4 i1 dx i : fx 1 ; x 2 ; x 3 ; x 4 g is an independent set of Gg. In this paper, we will prove that if r 4 G ! n 2j, then there exists a longest cycle C of G such that V G À C is an independent set of G. Furthermore, if the minimum degree of G is at least a, then G is hamiltonian.

References (10)

  1. Bauer, D., Broersma, H.J., Li R., Veldman, H.J.: A generalization of a result of HaÈ ggkvist and Nicoghossian. J. Comb. Theory B 47, 237±243 (1989)
  2. Bondy, J.A.: Integrity in graph theory. In: G. Chartrand, Y. Alavi, D.L. Goldsmith, L. Lesniak-Foster and D.R. Lick: The Theory and Applications of Graphs, pp 117±125, New York, Wiley 1981
  3. Fraisse, P.: D k -cycles and their applications for hamiltonian graphs. The se de Doc- torat d'eÁ tat, UniversiteÁ de Paris-Sud 1986
  4. HaÈ ggkvist, R., Nicoghossian, G.G.: A remark on hamiltonian cycles. J. Comb. Theory B 30 118±120 (1981)
  5. Nash-Williams, C.St.J.A.: Edge disjoint hamiltonian circuits in graphs with vertices of large valency. In: L. Mirsky: Studies in Pure Mathematics, pp 157±183, London, Academic Press 1971
  6. Nikogosyan, Zh.G.: A sucient condition for a graph to be hamiltonian. (Russian, Armenian summary), Akad. Nauk Armyan. SSR Dokl. 78, 12±16 (1984)
  7. Ore, O.: Note on hamiltonian circuits. Am. Math. Mon. 67, 55 (1960)
  8. Tian, F.: Research problem 1. J. Nanjing Univ. Nat. Sci. Ed. A Special Issue on Graph Theory 27, 232 (1991)
  9. Wei, B.: A short proof of a theorem concerning degree sums and connectivity on hamiltonian graphs. J. Comb. Theory B 75, 157±159 (1999)
  10. Zou, Y.: A generalization of a theorem of Jung. J. Nanjing Normal Univ. Nat. Sci. Ed. 2, 8±11 (1987)