Academia.eduAcademia.edu

Outline

Bias robustness of three median-based regression estimates

2004, Journal of Statistical Planning and Inference

Abstract

The need for regression estimates with small biases has been highlighted in view of the renewed interest in robust inference beyond point estimation. Estimates with small biases are essential for stable and informative robust inference (see Outliers in Statistical Data by V. T. Lewis, 1994, p. 74 and Fraiman et al., 2001, Ann. Statist, to appear). In this paper we study the bias performance of three median-based estimates: Brown and Mood (1951) estimate, and Sen (1968) estimate and Siegel's repeated median (1982), which exhibits an outstanding bias performance. We also consider a one-step version of Brown and Mood's estimate. We pay special attention to the maximum asymptotic bias of the intercept parameter which has been mostly ignored in the robustness literature (with exceptions pointed out in the introduction).

References (43)

  1. References Adrover, J.G. (1998). Minimax bias robust estimation of the dispersion matrix of a multivariate distribution. Ann. Statist, 26, 2301-2320.
  2. Adrover, J. G. and Zamar, R. H. (2000). Bias robustness of three median-based regression esti- mates. Tech. Rep. 194 , Department of Statistics, UBC, Vancouver, Canada.
  3. Barnett, V. and Lewis, T. (1994). Outliers in statistical data. Wiley & Sons. New York.
  4. Berrendero, J.R. and Romo, J.J (1998). Stability under contamination of robust regression esti- mates based on differences of residuals. J. Statist. Plann. Infer., 70, 149-165.
  5. Berrendero, J.R. and Zamar, R.H. (2001). Maximum bias curves for robust regression with non- elliptical regressors. Ann. Statist., 29.
  6. Brown, G.W. and Mood, A. M. (1951). On median tests for linear hypotheses, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Univ. of California Press, Berkeley, 159-166.
  7. Coakley, C. and Hettmansperger, T.P. (1993). A bounded influence, high breakdown, efficient regression estimator. J. Amer. Statist. Assoc., 88, 872-880.
  8. Croux, C., Rousseeuw, P.J. and Hössjer, O. (1994). Generalized S-estimators, J. Amer. Statist. Assoc., 79, 1271-1281.
  9. Davies, P.L. (1993). Aspects of robust linear regression. Ann. Statist, 21, 1843-1899.
  10. Donoho, D.L. and Liu, R.C. (1988). The "automatic" robustness of minimum distance functionals. Ann. Statist, 16, 552-586.
  11. Fraiman, R., Yohai, V.J. and Zamar (2001). Optimal robust M-estimates of location. Ann. Statist, 29.
  12. Hampel, F.R. (1971). General qualitative definition of robustness. Ann. Math. Statist, 42, 1887-1896.
  13. Hampel, F.R. (1974). The influence curve and its role in robust estimation, J. Amer. Statist. Assoc., 69, 383-393.
  14. Hampel, F.R., Ronchetti, E. Z., Rousseeuw, P.J. and Stahel, W. A. (1986). Robust Statistics. The approach based on influence functions. Wiley Series in Probability and Mathematical Statistics, New York.
  15. He, X. (1991). A local breakdown point property of robust tests in linear regression. J. Multivariate Anal., 38, 294-305.
  16. He, X., Simpson, D.G. and Portnoy, S.L. (1990). Breakdown robustness of tests. J. Amer. Statist. Assoc., 85, 446-452.
  17. He, X. and Simpson D.G. (1993). Lower bound for contamination bias: globally minimax versus locally linear estimation. Ann. Statist., 21, 314-337.
  18. Hennig, Christian (1995). Efficient high-breakdown point estimators in robust regression: Which function to choose? Statistics & Decisions, 13, 221-241.
  19. Hössjer, O, Rousseeuw, P.J. and Croux, C. (1994). Asymptotics of the repeated median slope estimator, Ann. Statist, 22, 1478-1501.
  20. Huber, P.J. (1964). Robust estimation of a location parameter, Ann. Math. Statist., 35, 73-101.
  21. Huber, P.J. (1981). Robust Statistics. Wiley, New York.
  22. Maronna, R.A., Bustos, O.H. and Yohai, V.J. (1979). Bias-and-efficiency-robustness of general M-estimators for regression with random carriers. In Smoothing Techniques for Curve Esti- mation, T. Gasser and M. Rosemblatt (eds.). Lecture Notes in Mathematics 757. Springer, Berlin, 91-116.
  23. Martin, R.D. and Zamar, R.H. (1989). Asymptotically min-max bias robust M-estimates of scale for positive random variables. J. Amer. Statist. Assoc., 84, 494-501.
  24. Martin, R.D. and Zamar, R.H. (1993). Bias robust estimation of scale. Ann. Statist., 21, 991- 1017.
  25. Martin, R. D., Yohai, V. J. and Zamar, R. H. (1989). Min-max bias robust regression. Ann. Statist., 17, 1608-1630.
  26. Riedel, M. (1987). The asymptotic bias in the deviation of the local model. Stability Problems for Stochastic Models. Lecture Notes in Math., 1233, 134-144. Springer, Berlin.
  27. Riedel, M. (1989a). On the bias-robustness in the location model I. Statistics, 20, 223-234.
  28. Riedel, M. (1989b). On the bias-robustness in the location model II. Statistics, 20, 235-246.
  29. Rousseeuw, P.J. (1984). Least median of squares regression. J. Amer. Statist. Assoc., 79, 871-880.
  30. Rychlik, T. (1987). An asymptotically most bias-stable estimator of location. Statistics, 18, 563-571.
  31. Rychlik, T. and Zielinski, R. (1987). An asymptotically most bias-robust invariant estimator of location. Stability Problems for Stochastic Models. Lecture Notes in Math., 1233, 156-171. Springer, Berlin.
  32. Sen, P.K. (1968). Estimates of the regression coefficient based on Kendall's Tau. J. Amer. Statist. Assoc., 63, 1379-1389.
  33. Siegel, A. (1982). Robust regression using repeated medians. Biometrika, 69, 242-244.
  34. Simpson, D. G., Ruppert, and Carroll, R. J. (1992). On one-step GM-estimates and stability of inferences in linear regression. J. Amer. Statist. Assoc., 87, 439-450.
  35. Theil, H. (1950). A rank-invariant method of linear and polynomial regression analysis, I, II, and III. In Nederl. Akad. Wetensch. Proc., pp. 386-392, 521-525, and 1397-1412.
  36. Yohai, V. J. (1987). High-breakdown point and high efficiency robust estimates for regression. Ann. Statist., 15, 642-656.
  37. Yohai, V.J. and Zamar, R. H. (1988). High breakdown point estimates of regression by means of the minimization of an efficient scale. J. Amer. Statist. Assoc., 83, 406-413.
  38. Yohai, V.J. and Zamar, R. H. (1993). A minimax-bias property of the least α-quantile estimates. Ann. Statist. 21, 1824-1842.
  39. Yohai, V.J. and Zamar, R. H. (1997). Optimal locally robust M-estimates of regression. J. Statist. Plann. Inference, 64, 309-323.
  40. Zamar, R.H. (1992). Bias robust estimation in orthogonal regression. Ann. Statist. 20, 1875-1888.
  41. Zielinski, R. (1985). A most bias-robust estimate of the location parameter: a general existence theorem. Statistics, 16, 637-640.
  42. Zielinski, R. (1987). Robustness of sample mean and median under restrictions on outliers. Zastos. Mat.,19, 239-240.
  43. Zielinski, R. (1988). A distribution-free median-unbiased quantile estimator. Statistics, 19, 223- 227.