Visual Learning by Imitation With Motor Representations
2005, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
https://doi.org/10.1109/TSMCB.2005.846654Abstract
We propose a general architecture for action (mimicking) and program (gesture) level visual imitation. Action-level imitation involves two modules. The viewpoint Transformation (VPT) performs a "rotation" to align the demonstrator's body to that of the learner. The Visuo-Motor Map (VMM) maps this visual information to motor data.
References (32)
- S. Schaal, "Is imitation learning the route to humanoid robots," Trends Cognitive Sci., vol. 3, no. 6, 1999.
- J. Yang, Y. Xu, and C. S. Chen, "Hidden Markov model approach to skill learning and its application to telerobotics," IEEE Trans. Robotics Autom., vol. 10, no. 5, pp. 621-631, Oct. 1994.
- T. G. Williams, J. J. Rowland, and M. H. Lee, "Teaching from examples in assembly and manipulation of snack food ingredients by robot," in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 29-Nov. 03 2001, pp. 2300-2305.
- A. D'Souza, S. Vijayakumar, and S. Schaal, "Learning inverse kine- matics," in Proc. Int. Conf. Intell. Robots Syst., Maui, HI, 2001.
- J. S. Bruner, "Nature and use of immaturity," Amer. Psychol., vol. 27, pp. 687-708, 1972.
- M. Asada, Y. Yoshikawa, and K. Hosoda, "Learning by observation without three-dimensional reconstruction," Intell. Auton. Syst., pp. 555-560, 2000.
- A. Billard and G. Hayes, "Drama, a connectionist architecture for control and learning in autonomous robots," Adaptive Behavior, vol. 7, no. 1, pp. 35-63, 1999.
- M. J. Mataric ´, "Sensory-motor primitives as a basis for imitation: Linking perception to action and biology to robotics," in Imitation in Animals and Artifacts, C. Nehaniv and K. Dautenhahn, Eds: MIT Press, 2000.
- G. Metta, G. Sandini, L. Natale, and F. Panerai, "Sensorimotor inter- action in a developing robot," in Porc. First Int. Workshop Epigenetic Robotics: Modeling Cognitive Development Robotic Syst., Lund, Sweden, Sep. 2001.
- G. Metta, R. Manzotti, F. Panerai, and G. Sandini, "Development: Is it the right way toward humanoid robotics?," in Proc. IAS, Venice, Italy, Jul. 2000.
- M. Asada, K. F. MacDorman, H. Ishiguro, and Y. Kuniyoshi, "Cognitive developmental robotics as a new paradigm for the design of humanoid robots," Robotics Autom., vol. 37, pp. 185-193, 2001.
- V. G. Payne and L. D. Isaacs, Human Motor Development: A Lifespan Approach. Mountain View, CA: Mayfield, 2002.
- L. Fadiga, L. Fogassi, V. Gallese, and G. Rizzolatti, "Visuomotor neu- rons: Ambiguity of the discharge or 'motor' perception?," Int. J. Psy- chophysiol., vol. 35, 2000.
- V. S. Ramachandran, "Mirror neurons and imitation learning as the driving force behind the great leap forward in human evolution," Edge, vol. 69, Jun. 2000.
- A. Murata, L. Fadiga, L. Fogassi, V. Gallese, V. Raos, and G. Rizzolatti, "Object representation in the ventral premotor cortex (area f5) of the monkey," J. Neurophysiol., vol. 78, no. 4, pp. 2226-2230, Oct. 1997.
- E. Oztop, "Modeling the Mirror: Grasp Learning and Action Recogni- tion," Ph.D. Dissertation, Univ. Southern Calif., Los Angeles, CA, Aug. 2002.
- J. J. Gibson, The Ecological Approach to Visual Perception. Boston, MA: Houghton Mifflin, 1979.
- L. Fogassi, V. Gallese, G. Buccino, L. Craighero, L. Fadiga, and G. Riz- zolatti, "Cortical mechanism for the visual guidance of hand grasping movements in the monkey: A reversible inactivation study," Brain, vol. 124, no. 3, pp. 571-586, Mar. 2001.
- J. M. Rehg and T. Kanade, "Visual tracking of high DOF articulated structures: An application to human hand tracking," in Proc. ECCV (2), 1994, pp. 35-46.
- Y. Wu and T. S. Huang, "Capturing articulated human hand motion: A divide-and-conquer approach," in Proc ICCV (1), 1999, pp. 606-611.
- M. J. Black and A. D. Jepson, "Eigentracking: Robust matching and tracking of articulated objects using a view-based representation," in Proc. ECCV (1), 1996, pp. 329-342.
- D. M. Gavrila, "The visual analysis of human movement: A survey," in Proc. CVIU, vol. 73, 1999, pp. 82-98.
- J. M. Rehg and T. Kanade, "Model-based tracking of self-occluding ar- ticulated objects," in Proc. ICCV, 1995, pp. 612-617.
- Y. Wu and T. S. Huang, "View-independent recognition of hand pos- tures," in Porc. CVPR, Jun. 2000, pp. 88-94.
- R. L. Gregory, Eye and Brain, The Psychology of Seeing. Princeton, NJ: Princeton Univ. Press, 1990.
- CyberGlove [Online]. Available: http://www.immersion.com
- M. Cabido-Lopes and J. Santos-Victor, Visual transformations in gesture imitation: What you see is what you do, in Proc. Int. Conf. Robotics Autom., 2003.
- P. Rochat, "Ego function of early imitation," in The Imitative Mind, A. N. Meltzoff and W. Prinz, Eds. Cambridge, U.K.: Cambridge Univ. Press, 2002.
- C. Taylor, "Reconstruction of articulated objects from point correspon- dences in a single uncalibrated image," Comput. Vision Image Under- standing, vol. 80, 2000.
- Statistical Modeling Using Gaussian Mixtures and HMMs with Matlab, P. M. Baggenstoss. [Online]. Available: http://www.npt.nuwc.navy.mil/ Csf/htmldoc/pdf/
- N. Vlassis and A. Likas, "A kurtosis-based dynamic approach to Gaussian mixture modeling," IEEE Trans. Syst., Man, Cybern. A, vol. 29, no. 4, pp. 393-399, JUl. 1999.
- M. Schenatti, L. Natale, G. Metta, and G. Sandini, Object Grasping Data-Set. Genova, Italy: Lira Lab., Univ. Genova, 2003.