Academia.eduAcademia.edu

Outline

Developing a stress testing framework based on market risk models

2008

https://doi.org/10.1016/J.JBANKFIN.2007.12.041

Abstract

The Basel 2 Accord requires regulatory capital to cover stress tests, yet no coherent and objective framework for stress testing portfolios exists. We propose a new methodology for stress testing in the context of market risk models that can incorporate both volatility clustering and heavy tails. Empirical results compare the performance of eight risk models with four possible conditional and unconditional return distributions over different rolling estimation periods. When applied to major currency pairs using daily data spanning more than 20 years we find that stress test results should have little impact on current levels of foreign exchange regulatory capital.

FAQs

sparkles

AI

What is the impact of using conditional versus unconditional risk models?add

The study finds that conditional risk models outperform unconditional models in capturing volatility clustering, particularly during stress events, leading to greater forecasting accuracy for extreme outcomes.

How do stress testing methodologies vary in capturing extreme market movements?add

The research reveals that model-based stress tests significantly outperform traditional historical scenario methods in predicting extreme market losses, yielding more objective and statistically reliable results.

What advantages do empirical distributions provide in stress testing currency portfolios?add

Empirical distributions allow for better modeling of heavy tails and volatility clustering, resulting in superior performance in stress tests compared to normal distribution assumptions.

How effective are backtesting procedures in assessing risk models for stress testing?add

The rigorous backtesting procedures conducted show that risk models, particularly the conditional empirical model, consistently meet accuracy requirements, mitigating risks associated with model misspecification.

What factors influence the choice of risk horizons in stress testing?add

Choosing appropriate risk horizons depends on market liquidity, position size, and potential delays in response to shocks; this study recommends a minimum of 10 days for liquid currency positions.

References (51)

  1. Angelidis, T., Benos, A., Degiannakis, S., 2004. The use of GARCH models in VaR estimation. Statistical Methodology 1, 105-128.
  2. Angelidis, T., Benos, A., 2006. Liquidity adjusted value-at-risk based on the components of the bid-ask spread. Applied Financial Economics 16 (11), 835-851.
  3. Aragones, J., Blanco, C., Dowd, K., 2001. Incorporating stress tests into market risk modeling. Derivatives Quarterly. Spring 2001, 44-49.
  4. Bangia, A., Diebold, F., Schuermann, T., Stroughair, J., 2002. Modeling liquidity risk with implications for traditional market risk measure- ment and management. In: Levich, R., Figlewski, S. (Eds.), Risk Management: State of the Art. Springer.
  5. Barone-Adesi, G., Bourgoin, F., Giannopoulos, K., 1998. Don't look back. Risk 11, 100-103.
  6. Basel Committee on Banking Supervision, 1996. Amendment to the Capital Accord to Incorporate Market Risks.
  7. Basel Committee on Banking Supervision, 2006. International Conver- gence of Capital Measurement and Capital Standards: A Revised Framework Comprehensive Version (Bank for International Settle- ments, Basel).
  8. Bauwens, L., Laurent, S., Rombouts, J., 2004. Multivariate GARCH models: A Survey, CORE Discussion Paper (Louvain).
  9. Berkowitz, J., 2000. A coherent framework for stress-testing. Journal of Risk 2, 1-11.
  10. Berkowitz, J., Christoffersen, P., Pelletier, D., 2006. Evaluating VaR Models with Desk-level Data. McGill University.
  11. Berkowitz, J., O'Brien, J., 2002. How accurate are value-at-risk models at commercial banks? Journal of Finance, 1093-1111.
  12. Bollerslev, T., 1986. Generalised autoregressive conditional heteroskedas- ticity. Journal of Econometrics 31, 309-328.
  13. Borio, C., 2000. Market liquidity and stress: Selected issues and policy implications. BIS Quarterly Review, 38-51.
  14. Butler, J.S., Schachter, B., 1998. Estimating VaR with a precision measure by combining kernel estimation with historical simulation. Review of Derivatives Research 1, 371-390.
  15. Chen, S., Tang, C., 2005. Nonparametric inference of value-at-risk for dependent financial returns. Journal of Financial Econometrics 3, 227- 255.
  16. Christoffersen, P., 1998. Evaluating interval forecasts. International Economic Review 39, 841-862.
  17. Committee on the Global Financial System, 2005. A survey of stress tests and current practice at major financial institutions.
  18. Danielsson, J., De Vries, C., 2000. Value-at-risk and extreme returns. In: Embrechts, Paul (Ed.), Extremes and Integrated Risk Management. Risk Books, London.
  19. Danielsson, J., Zigrand, J.-P., 2004. On time-scaling of risk and the square-root-of-time rule, EFA 2004 Maastricht Meetings.
  20. Deuskar, P., 2006. Extrapolative Expectations: Implications for Volatility and Liquidity. NYU Stern School of Business, New York.
  21. Dowd, K., 2002. Measuring Market Risk. Wiley Finance.
  22. Dowd, K., Rowe, D., 2004. Introduction to value-at-risk models. In: Alexander, C., Sheedy, E. (Eds.), The Professional Risk Manager's Handbook. PRMIA Publications.
  23. Efron, B., Tibshirani, R.J., 1993. An Introduction to the Bootstrap. Chapman & Hall, New York.
  24. Engle, R., 2002. Dynamic conditional correlation: A simple class of multivariate generalised autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics 20, 339-350.
  25. Galati, G., Heath, A., McGuire, P., 2007. Evidence of carry trade activity. BIS Quarterly Review, 27-41.
  26. Gencay, R., Selcuk, F., 2004. Extreme value theory and VaR: Relative performance in emerging markets. International Journal of Forecast- ing 20, 287-303.
  27. Giot, P., Laurent, S., 2003. Value-at-risk for long and short trading positions. Journal of Applied Econometrics 18, 641-664.
  28. Greenspan, A., 2000. Greenspan's plea for stress testing. Risk 5.
  29. Huisman, R., Koedijk, K., Pownall, R., 1998. VaR-x: Fat tails in financial risk management. Journal of Risk 1, 47-61.
  30. Hull, J., 2006. Risk Management and Financial Institutions. Pearson Prentice Hall.
  31. Jarrow, R., Subramanian, A., 1997. Mopping up liquidity. Risk 10, 170- 173. Jorion, P., 2007. Value at Risk. McGraw Hill.
  32. Kole, E., Koedijk, K., Verbeek, M., 2007. Selecting copulas for risk management. Journal of Banking and Finance 31, 2405-2423.
  33. Kupiec, P., 1995. Techniques for verifying the accuracy of risk measure- ment models. The Journal of Derivatives, 73-84.
  34. Kupiec, P., 1998. Stress testing in a Value-at-Risk framework. Journal of Derivatives 6, 7-24.
  35. Longin, F., 2000. From Value-at-Risk to stress testing: The extreme value approach. Journal of Banking and Finance 24, 1097-1130.
  36. Longin, F., 2005. The choice of the distribution of asset returns: How extreme value theory can help? Journal of Banking and Finance 29, 1017-1035.
  37. Lopez, J., 2005. Stress tests: Useful complements to financial risk models. FRBSF Economic Letter, 119-124.
  38. McNeil, A., Frey, R., 2000. Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach. Journal of Empirical Finance 7, 271-300.
  39. McNeil, A., Frey, R., Embrechts, P., 2005. Quantitative Risk Manage- ment. Princeton University Press.
  40. Mittnik, S., Paolella, M., 2000. Conditional density and Value-at-Risk prediction of asian currency exchange rates. Journal of Forecasting 19, 313-333.
  41. Patton, A., 2006. Copula-Based Models for Financial Time Series. London School of Economics.
  42. Perignon, C., Smith, D., 2006. The Level and Quality of Value-at-Risk Disclosure by Commercial Banks. Simon Fraser University, Vancouver.
  43. Plerou, V., Gopikrishnan, P., Stanley, H.E., 2005. Quantifying fluctua- tions in market liquidity: Analysis of the bid-ask spread. Physical Review E 71, 046131.
  44. Pritsker, M., 2006. The hidden dangers of historical simulation. Journal of Banking and Finance 30, 561-582.
  45. Rowe, D., 2005. The new market risk challenge. Risk 18 (9), 103. Settlements, Bank for International, 2005. Triennial Central Bank Survey: Foreign Exchange and Derivatives Market Activity in 2004 (Bank for International Settlements, Basel).
  46. Sheather, S., Marron, J.S., 1990. Kernel quantile estimators. Journal of the American Statistical Association 85, 410-416.
  47. Silverman, B.W., 1986. Density Estimation for Statistics and Data Analysis. Chapman and Hall, London.
  48. So, M., Yu, P., 2006. Empirical analysis of GARCH models in value at risk estimation. International Financial Markets, Institutions and Money 16, 180-197.
  49. Straumann, D., 2004. Estimation in Conditionally Heteroscedastic Time Series Models. Lecture Notes in Statistics. Springer-Verlag, Berlin.
  50. Venter, J., de Jongh, P., 2002. Risk estimation using the normal inverse Gaussian distribution. Journal of Risk 4, 1-5.
  51. Vilasuso, J., 2002. Forecasting exchange rate volatility. Economics Letters 76, 59-64.